当前位置: 首页>>代码示例>>Python>>正文


Python GaussianMixture.sample方法代码示例

本文整理汇总了Python中sklearn.mixture.GaussianMixture.sample方法的典型用法代码示例。如果您正苦于以下问题:Python GaussianMixture.sample方法的具体用法?Python GaussianMixture.sample怎么用?Python GaussianMixture.sample使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.mixture.GaussianMixture的用法示例。


在下文中一共展示了GaussianMixture.sample方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: GaussianMixture1D

# 需要导入模块: from sklearn.mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.GaussianMixture import sample [as 别名]
class GaussianMixture1D(object):
    """
    Simple class to work with 1D mixtures of Gaussians

    Parameters
    ----------
    means : array_like
        means of component distributions (default = 0)
    sigmas : array_like
        standard deviations of component distributions (default = 1)
    weights : array_like
        weight of component distributions (default = 1)
    """
    def __init__(self, means=0, sigmas=1, weights=1):
        data = np.array([t for t in np.broadcast(means, sigmas, weights)])

        components = data.shape[0]
        self._gmm = GaussianMixture(components, covariance_type='spherical')

        self._gmm.means_ = data[:, :1]
        self._gmm.weights_ = data[:, 2] / data[:, 2].sum()
        self._gmm.covariances_ = data[:, 1] ** 2

        self._gmm.precisions_cholesky_ = 1 / np.sqrt(self._gmm.covariances_)

        self._gmm.fit = None  # disable fit method for safety

    def sample(self, size):
        """Random sample"""
        return self._gmm.sample(size)

    def pdf(self, x):
        """Compute probability distribution"""

        if x.ndim == 1:
            x = x[:, np.newaxis]
        logprob = self._gmm.score_samples(x)
        return np.exp(logprob)

    def pdf_individual(self, x):
        """Compute probability distribution of each component"""

        if x.ndim == 1:
            x = x[:, np.newaxis]
        logprob = self._gmm.score_samples(x)
        responsibilities = self._gmm.predict_proba(x)
        return responsibilities * np.exp(logprob[:, np.newaxis])
开发者ID:astroML,项目名称:astroML,代码行数:49,代码来源:gauss_mixture.py


注:本文中的sklearn.mixture.GaussianMixture.sample方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。