当前位置: 首页>>代码示例>>Python>>正文


Python GaussianMixture.aic方法代码示例

本文整理汇总了Python中sklearn.mixture.GaussianMixture.aic方法的典型用法代码示例。如果您正苦于以下问题:Python GaussianMixture.aic方法的具体用法?Python GaussianMixture.aic怎么用?Python GaussianMixture.aic使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.mixture.GaussianMixture的用法示例。


在下文中一共展示了GaussianMixture.aic方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: gmm_analysis

# 需要导入模块: from sklearn.mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.GaussianMixture import aic [as 别名]
 def gmm_analysis(self, X_train, X_test, y_train, y_test, data_set_name, max_clusters, analysis_name='GMM'):
     scl = RobustScaler()
     X_train_scl = scl.fit_transform(X_train)
     X_test_scl = scl.transform(X_test)
     
     em_bic = []
     em_aic = []
     em_completeness_score = []
     em_homogeneity_score = []
     em_measure_score = []
     em_adjusted_rand_score = []
     em_adjusted_mutual_info_score = []
     
     cluster_range = np.arange(2, max_clusters+1, 1)
     for k in cluster_range:
         print('K Clusters: ', k)
         
         ##
         ## Expectation Maximization
         ##
         em = GaussianMixture(n_components=k, covariance_type='full')
         em.fit(X_train_scl)
         em_pred = em.predict(X_train_scl)
         
         em_bic.append(em.bic(X_train_scl))
         em_aic.append(em.aic(X_train_scl))        
     
         # metrics
         y_train_score = y_train.reshape(y_train.shape[0],)
         
         em_homogeneity_score.append(homogeneity_score(y_train_score, em_pred))
         em_completeness_score.append(completeness_score(y_train_score, em_pred))
         em_measure_score.append(v_measure_score(y_train_score, em_pred))
         em_adjusted_rand_score.append(adjusted_rand_score(y_train_score, em_pred))
         em_adjusted_mutual_info_score.append(adjusted_mutual_info_score(y_train_score, em_pred))
         
     
     ##
     ## Plots
     ##
     ph = plot_helper()
     
     ##
     ## BIC/AIC Plot
     ##
     title = 'Information Criterion Plot (' + analysis_name + ') for ' + data_set_name
     name = data_set_name.lower() + '_' + analysis_name.lower() + '_ic'
     filename = './' + self.out_dir + '/' + name + '.png'
     
     ph.plot_series(cluster_range,
                 [em_bic, em_aic],
                 [None, None],
                 ['bic', 'aic'],
                 cm.viridis(np.linspace(0, 1, 2)),
                 ['o', '*'],
                 title,
                 'Number of Clusters',
                 'Information Criterion',
                 filename)
     
     ##
     ## Score Plot
     ##
     title = 'Score Summary Plot (' + analysis_name + ') for ' + data_set_name
     name = data_set_name.lower() + '_' + analysis_name.lower() + '_score'
     filename = './' + self.out_dir + '/' + name + '.png'
                 
     ph.plot_series(cluster_range,
                 [em_homogeneity_score, em_completeness_score, em_measure_score, em_adjusted_rand_score, em_adjusted_mutual_info_score],
                 [None, None, None, None, None, None],
                 ['homogeneity', 'completeness', 'measure', 'adjusted_rand', 'adjusted_mutual_info'],
                 cm.viridis(np.linspace(0, 1, 5)),
                 ['o', '^', 'v', '>', '<', '1'],
                 title,
                 'Number of Clusters',
                 'Score',
                 filename)
开发者ID:rbaxter1,项目名称:CS7641,代码行数:79,代码来源:part1.py

示例2: range

# 需要导入模块: from sklearn.mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.GaussianMixture import aic [as 别名]
w = np.exp(-np.exp(3 * w.mean(axis=1)))



# gmm model selection with aic:
lowest_aic = np.infty
aic = []
n_components_range = range(1, 7)
cv_types = ['spherical', 'tied', 'diag', 'full']
for cv_type in cv_types:
    for n_components in n_components_range:
        # Fit a mixture of Gaussians with EM
        gmm = GaussianMixture(n_components=n_components,
                              covariance_type=cv_type, n_init=5)
        gmm.fit(X)
        aic.append(gmm.aic(X))
        if aic[-1] < lowest_aic:
            lowest_aic = aic[-1]
            best_gmm = gmm

preds = best_gmm.predict(X)
probs = best_gmm.predict_proba(X)

for name, col in zip(cv_types, np.array(aic).reshape(-1, len(cv_types)).T):
    plt.plot(n_components_range, col, label=name)
plt.legend()
plt.savefig('gmm_sklearn_aic/aic.pdf')


data_thr['preds'] = pd.Series(preds).astype("category")
开发者ID:ngoix,项目名称:cyg-x1,代码行数:32,代码来源:gmm_sklearn_aic.py


注:本文中的sklearn.mixture.GaussianMixture.aic方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。