本文整理汇总了Python中sklearn.mixture.GaussianMixture.fit方法的典型用法代码示例。如果您正苦于以下问题:Python GaussianMixture.fit方法的具体用法?Python GaussianMixture.fit怎么用?Python GaussianMixture.fit使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.mixture.GaussianMixture
的用法示例。
在下文中一共展示了GaussianMixture.fit方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: learn_subset
# 需要导入模块: from sklearn.mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.GaussianMixture import fit [as 别名]
def learn_subset(self, search_space):
#Mask undesired features
current_array = self.vectors[:,search_space]
GM = GaussianMixture(n_components = 2,
covariance_type = "full",
tol = 0.001,
reg_covar = 1e-06,
max_iter = 1000,
n_init = 25,
init_params = "kmeans",
weights_init = None,
means_init = None,
precisions_init = None,
random_state = None,
warm_start = False,
verbose = 0,
verbose_interval = 10
)
GM.fit(current_array)
labels = GM.predict(current_array)
unique, counts = np.unique(labels, return_counts = True)
count_dict = dict(zip(unique, counts))
return count_dict, labels
示例2: fit_mixtures
# 需要导入模块: from sklearn.mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.GaussianMixture import fit [as 别名]
def fit_mixtures(X,mag,mbins,binwidth=0.2,seed=None,
keepscore=False,keepbic=False,**kwargs):
kwargs.setdefault('n_components',25)
kwargs.setdefault('covariance_type','full')
fits = []
if keepscore:
scores = []
if keepbic:
bics = []
if seed:
np.random.seed(seed)
for bincenter in mbins:
# this is not an efficient way to assign bins, but the time
# is negligible compared to the GMM fitting anyway
ii = np.where( np.abs(mag-bincenter) < binwidth )[0]
if False:
print('{:.2f}: {} qsos'.format(bincenter,len(ii)))
gmm = GaussianMixture(**kwargs)
gmm.fit(X[ii])
fits.append(gmm)
if keepscore:
scores.append(gmm.score(X[ii]))
if keepbic:
bics.append(gmm.bic(X[ii]))
rv = (fits,)
if keepscore:
rv += (scores,)
if keepbic:
rv += (bics,)
return rv
示例3: fit
# 需要导入模块: from sklearn.mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.GaussianMixture import fit [as 别名]
def fit(self, data, ngauss, n_iter=5000, min_covar=1.0e-6,
doplot=False, **keys):
"""
data is shape
[npoints, ndim]
"""
from sklearn.mixture import GaussianMixture
if len(data.shape) == 1:
data = data[:,numpy.newaxis]
print("ngauss: ",ngauss)
print("n_iter: ",n_iter)
print("min_covar:",min_covar)
gmm=GaussianMixture(
n_components=ngauss,
max_iter=n_iter,
reg_covar=min_covar,
covariance_type='full',
)
gmm.fit(data)
if not gmm.converged_:
print("DID NOT CONVERGE")
self._gmm=gmm
self.set_mixture(gmm.weights_, gmm.means_, gmm.covariances_)
if doplot:
plt=self.plot_components(data=data,**keys)
return plt
示例4: gmm
# 需要导入模块: from sklearn.mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.GaussianMixture import fit [as 别名]
def gmm(nclusters, coords, n_init=50, n_iter=500):
if USE_GAUSSIAN_MIXTURE:
est = GaussianMixture(n_components=nclusters, n_init=n_init, max_iter=n_iter)
else:
est = GMM(n_components=nclusters, n_init=n_init, n_iter=n_iter)
est.fit(coords)
return Partition(est.predict(coords))
示例5: gmm
# 需要导入模块: from sklearn.mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.GaussianMixture import fit [as 别名]
def gmm(k, X, run_times=5):
gm = GMM(k, n_init=run_times, init_params='kmeans')
#gm = GMM(k)
gm.fit(X)
zh = gm.predict(X)
mu = gm.means_
cov = gm.covariances_
return zh, mu, cov
示例6: fit_gmm
# 需要导入模块: from sklearn.mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.GaussianMixture import fit [as 别名]
def fit_gmm(samples, ncomponents=2):
"""Given a numpy array of floating point samples, fit a gaussian mixture model."""
# assume samples is of shape (NSAMPLES,); unsqueeze to (NSAMPLES,1) and train a GMM:
gmm = GaussianMixture(n_components=ncomponents)
gmm.fit(samples.reshape(-1,1))
# return params of GMM in [(coeff, mu, sigma)] format:
params = [(gmm.weights_[c], gmm.means_[c][0], gmm.covariances_[c][0][0]) for c in range(ncomponents)]
return params
示例7: gmm
# 需要导入模块: from sklearn.mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.GaussianMixture import fit [as 别名]
def gmm(k, X, run_times=10, init='kmeans'):
"""GMM from sklearn library. init = {'kmeans', 'random'}, run_times
is the number of times the algorithm is gonna run with different
initializations.
"""
gm = GMM(k, n_init=run_times, init_params=init)
gm.fit(X)
zh = gm.predict(X)
return zh
示例8: main
# 需要导入模块: from sklearn.mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.GaussianMixture import fit [as 别名]
def main():
X, Y = get_data(10000)
print("Number of data points:", len(Y))
model = GaussianMixture(n_components=10)
model.fit(X)
M = model.means_
R = model.predict_proba(X)
print("Purity:", purity(Y, R)) # max is 1, higher is better
print("DBI:", DBI(X, M, R)) # lower is better
示例9: fit_conditional_parameters
# 需要导入模块: from sklearn.mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.GaussianMixture import fit [as 别名]
def fit_conditional_parameters(self, j):
class_wise_scores = self.get_class_wise_scores(j)
class_wise_parameters = dict()
for label in self._labels:
gmm = GaussianMixture(n_components=1)
gmm.fit(class_wise_scores[label].reshape(-1, 1))
class_wise_parameters[label] = \
self.Gaussian(mu=gmm.means_.flatten()[0],
std=np.sqrt(gmm.covariances_.flatten()[0]))
return class_wise_parameters
示例10: loggausfit
# 需要导入模块: from sklearn.mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.GaussianMixture import fit [as 别名]
def loggausfit(self):
self.fitDf['IRM_norm'] = self.fitDf['remanance']/self.fitDf['remanance'].max()
xstd,distance,means,covras,weights,yfits = [],[],[],[],[],[]
for i in range(10):
data = self.rand_data()
for j in range(20):
gmm = GMM(self.fitNumber, covariance_type='full')
model = gmm.fit(data)
xstd.append(np.std(model.means_))
means.append(model.means_)
covras.append(model.covariances_)
weights.append(model.weights_)
sample = self.fitDf['field'].values.reshape((-1, 1))
logprob = model.score_samples(sample) # M_best.eval(x)
responsibilities = model.predict_proba(sample)
pdf = np.exp(logprob)
pdf_individual = responsibilities * pdf[:, np.newaxis]
pdf_norm = np.sum(pdf_individual,axis=1)/np.max(np.sum(pdf_individual,
axis=1))
#distance.append(np.max([abs(i-j) for i,j in zip(np.sum(pdf_individual,axis=1),p)]))
distance.append(1 - spatial.distance.cosine(pdf_norm,self.fitDf['IRM_norm']))
yfits.append(pdf_individual)
del data
df = pd.DataFrame({'xstd':xstd, 'distance':distance, 'means':means,
'covras':covras, 'yfits':yfits, 'weights':weights})
df['cov_max'] = [np.min(i) for i in df['covras']]
df = df.sort_values(by=['distance','cov_max','xstd'], ascending=[False,True,False])
pdf_best = df['yfits'].iloc[0]
self.means = df['means'].iloc[0]
self.covra = df['covras'].iloc[0]#sigma**2
self.weights = df['weights'].iloc[0]
self.pdf_best = pdf_best/np.max(np.sum(pdf_best,axis=1))
示例11: main
# 需要导入模块: from sklearn.mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.GaussianMixture import fit [as 别名]
def main():
Xtrain, Ytrain, Xtest, Ytest = getKaggleMNIST()
dae = DeepAutoEncoder([500, 300, 2])
dae.fit(Xtrain)
mapping = dae.map2center(Xtrain)
plt.scatter(mapping[:,0], mapping[:,1], c=Ytrain, s=100, alpha=0.5)
plt.show()
# purity measure from unsupervised machine learning pt 1
gmm = GaussianMixture(n_components=10)
gmm.fit(Xtrain)
responsibilities_full = gmm.predict_proba(Xtrain)
print "full purity:", purity(Ytrain, responsibilities_full)
gmm.fit(mapping)
responsibilities_reduced = gmm.predict_proba(mapping)
print "reduced purity:", purity(Ytrain, responsibilities_reduced)
示例12: finish
# 需要导入模块: from sklearn.mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.GaussianMixture import fit [as 别名]
def finish(self):
print("Calculating mean ToT for each PMT from gaussian fits...")
gmm = GaussianMixture()
xs, ys = [], []
for (dom_id, channel_id), tots in self.tot_data.iteritems():
dom = self.db.doms.via_dom_id(dom_id)
gmm.fit(np.array(tots)[:, np.newaxis]).means_[0][0]
mean_tot = gmm.means_[0][0]
xs.append(31 * (dom.floor - 1) + channel_id + 600 * (dom.du - 1))
ys.append(mean_tot)
fig, ax = plt.subplots()
ax.scatter(xs, ys, marker="+")
ax.set_xlabel("31$\cdot$(floor - 1) + channel_id + 600$\cdot$(DU - 1)")
ax.set_ylabel("ToT [ns]")
plt.title("Mean ToT per PMT")
plt.savefig(self.plotfilename)
示例13: fit
# 需要导入模块: from sklearn.mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.GaussianMixture import fit [as 别名]
def fit(self, X, Y=None):
if self.method == 'random':
N = len(X)
idx = np.random.randint(N, size=self.M)
self.samples = X[idx]
elif self.method == 'normal':
# just sample from N(0,1)
D = X.shape[1]
self.samples = np.random.randn(self.M, D) / np.sqrt(D)
elif self.method == 'kmeans':
X, Y = self._subsample_data(X, Y)
print("Fitting kmeans...")
t0 = datetime.now()
kmeans = KMeans(n_clusters=len(set(Y)))
kmeans.fit(X)
print("Finished fitting kmeans, duration:", datetime.now() - t0)
# calculate the most ambiguous points
# we will do this by finding the distance between each point
# and all cluster centers
# and return which points have the smallest variance
dists = kmeans.transform(X) # returns an N x K matrix
variances = dists.var(axis=1)
idx = np.argsort(variances) # smallest to largest
idx = idx[:self.M]
self.samples = X[idx]
elif self.method == 'gmm':
X, Y = self._subsample_data(X, Y)
print("Fitting GMM")
t0 = datetime.now()
gmm = GaussianMixture(
n_components=len(set(Y)),
covariance_type='spherical',
reg_covar=1e-6)
gmm.fit(X)
print("Finished fitting GMM, duration:", datetime.now() - t0)
# calculate the most ambiguous points
probs = gmm.predict_proba(X)
ent = stats.entropy(probs.T) # N-length vector of entropies
idx = np.argsort(-ent) # negate since we want biggest first
idx = idx[:self.M]
self.samples = X[idx]
return self
示例14: main
# 需要导入模块: from sklearn.mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.GaussianMixture import fit [as 别名]
def main():
Xtrain, Ytrain, Xtest, Ytest = getKaggleMNIST()
dae = DeepAutoEncoder([500, 300, 2])
dae.fit(Xtrain)
mapping = dae.map2center(Xtrain)
plt.scatter(mapping[:,0], mapping[:,1], c=Ytrain, s=100, alpha=0.5)
plt.show()
# purity measure from unsupervised machine learning pt 1
# NOTE: this will take a long time (i.e. just leave it overnight)
gmm = GaussianMixture(n_components=10)
gmm.fit(Xtrain)
print("Finished GMM training")
responsibilities_full = gmm.predict_proba(Xtrain)
print("full purity:", purity(Ytrain, responsibilities_full))
gmm.fit(mapping)
responsibilities_reduced = gmm.predict_proba(mapping)
print("reduced purity:", purity(Ytrain, responsibilities_reduced))
示例15: Recognize
# 需要导入模块: from sklearn.mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.GaussianMixture import fit [as 别名]
def Recognize(self, fn):
im = Image.open(fn)
im = util.CenterExtend(im, radius=20)
vec = np.asarray(im.convert('L')).copy()
Y = []
for i in range(vec.shape[0]):
for j in range(vec.shape[1]):
if vec[i][j] <= 200:
Y.append([i, j])
gmm = GaussianMixture(n_components=7, covariance_type='tied', reg_covar=1e2, tol=1e3, n_init=9)
gmm.fit(Y)
centers = gmm.means_
points = []
for i in range(7):
scoring = 0.0
for w_i in range(3):
for w_j in range(3):
p_x = centers[i][0] -1 +w_i
p_y = centers[i][1] -1 +w_j
cr = util.crop(im, p_x, p_y, radius=20)
cr = cr.resize((40, 40), Image.ANTIALIAS)
X = np.asarray(cr.convert('L'), dtype='float')
X = (X.astype("float") - 180) /200
x0 = np.expand_dims(X, axis=0)
x1 = np.expand_dims(x0, axis=3)
global model
if self.model.predict(x1)[0][0] < 0.5:
scoring += 1
if scoring > 4:
points.append((centers[i][0] -20, centers[i][1] -20))
return points