当前位置: 首页>>代码示例>>Python>>正文


Python mixture.GaussianMixture类代码示例

本文整理汇总了Python中sklearn.mixture.GaussianMixture的典型用法代码示例。如果您正苦于以下问题:Python GaussianMixture类的具体用法?Python GaussianMixture怎么用?Python GaussianMixture使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了GaussianMixture类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: fit

    def fit(self, data, ngauss, n_iter=5000, min_covar=1.0e-6,
            doplot=False, **keys):
        """
        data is shape
            [npoints, ndim]
        """
        from sklearn.mixture import GaussianMixture

        if len(data.shape) == 1:
            data = data[:,numpy.newaxis]

        print("ngauss:   ",ngauss)
        print("n_iter:   ",n_iter)
        print("min_covar:",min_covar)

        gmm=GaussianMixture(
            n_components=ngauss,
            max_iter=n_iter,
            reg_covar=min_covar,
            covariance_type='full',
        )

        gmm.fit(data)

        if not gmm.converged_:
            print("DID NOT CONVERGE")

        self._gmm=gmm
        self.set_mixture(gmm.weights_, gmm.means_, gmm.covariances_)

        if doplot:
            plt=self.plot_components(data=data,**keys)
            return plt
开发者ID:esheldon,项目名称:ngmix,代码行数:33,代码来源:gmix_ndim.py

示例2: create_random_gmm

def create_random_gmm(n_mix, n_features, covariance_type, prng=0):
    prng = check_random_state(prng)
    g = GaussianMixture(n_mix, covariance_type=covariance_type)
    g.means_ = prng.randint(-20, 20, (n_mix, n_features))
    g.covars_ = make_covar_matrix(covariance_type, n_mix, n_features)
    g.weights_ = normalized(prng.rand(n_mix))
    return g
开发者ID:anntzer,项目名称:hmmlearn,代码行数:7,代码来源:test_gmm_hmm.py

示例3: fit_mixtures

def fit_mixtures(X,mag,mbins,binwidth=0.2,seed=None,
                 keepscore=False,keepbic=False,**kwargs):
    kwargs.setdefault('n_components',25)
    kwargs.setdefault('covariance_type','full')
    fits = []
    if keepscore:
        scores = []
    if keepbic:
        bics = []
    if seed:
        np.random.seed(seed)
    for bincenter in mbins:
        # this is not an efficient way to assign bins, but the time
        # is negligible compared to the GMM fitting anyway
        ii = np.where( np.abs(mag-bincenter) < binwidth )[0]
        if False:
            print('{:.2f}: {} qsos'.format(bincenter,len(ii)))
        gmm = GaussianMixture(**kwargs)
        gmm.fit(X[ii])
        fits.append(gmm)
        if keepscore:
            scores.append(gmm.score(X[ii]))
        if keepbic:
            bics.append(gmm.bic(X[ii]))
    rv = (fits,)
    if keepscore:
        rv += (scores,)
    if keepbic:
        rv += (bics,)
    return rv
开发者ID:imcgreer,项目名称:simqso,代码行数:30,代码来源:ebossfit.py

示例4: learn_subset

	def learn_subset(self, search_space):
	
		#Mask undesired features
		current_array = self.vectors[:,search_space]
	
		GM = GaussianMixture(n_components = 2, 
							covariance_type = "full", 
							tol = 0.001, 
							reg_covar = 1e-06, 
							max_iter = 1000, 
							n_init = 25, 
							init_params = "kmeans", 
							weights_init = None, 
							means_init = None, 
							precisions_init = None, 
							random_state = None, 
							warm_start = False, 
							verbose = 0, 
							verbose_interval = 10
							)
							
		GM.fit(current_array)

		labels = GM.predict(current_array)
		unique, counts = np.unique(labels, return_counts = True)
		count_dict = dict(zip(unique, counts))
		
		return count_dict, labels
开发者ID:jonathandunn,项目名称:c2xg,代码行数:28,代码来源:MDL_Learner.py

示例5: GaussianMixture

def GaussianMixture(V, **kwargs):
    """Performs clustering on *V* by using Gaussian mixture models. The function uses :func:`sklearn.micture.GaussianMixture`. See sklearn documents 
    for details.

    :arg V: row-normalized eigenvectors for the purpose of clustering.
    :type V: :class:`numpy.ndarray`

    :arg n_clusters: specifies the number of clusters. 
    :type n_clusters: int
    """

    try:
        from sklearn.mixture import GaussianMixture
    except ImportError:
        raise ImportError('Use of this function (GaussianMixture) requires the '
                          'installation of sklearn.')
    
    n_components = kwargs.pop('n_components', None)
    if n_components == None:
        n_components = kwargs.pop('n_clusters',None)
        if n_components == None:
            n_components = 1
    
    n_init = kwargs.pop('n_init', 1)
    
    mixture = GaussianMixture(n_init=n_init, n_components=n_components, **kwargs).fit(V)

    return mixture.fit_predict(V)
开发者ID:fongchun,项目名称:ProDy,代码行数:28,代码来源:cluster.py

示例6: gmm

 def gmm(nclusters, coords, n_init=50, n_iter=500):
     if USE_GAUSSIAN_MIXTURE:
         est = GaussianMixture(n_components=nclusters, n_init=n_init, max_iter=n_iter)
     else:
         est = GMM(n_components=nclusters, n_init=n_init, n_iter=n_iter)
     est.fit(coords)
     return Partition(est.predict(coords))
开发者ID:kgori,项目名称:treeCl,代码行数:7,代码来源:clustering.py

示例7: fit_gmm

def fit_gmm(samples, ncomponents=2):
    """Given a numpy array of floating point samples, fit a gaussian mixture model."""
    # assume samples is of shape (NSAMPLES,); unsqueeze to (NSAMPLES,1) and train a GMM:
    gmm = GaussianMixture(n_components=ncomponents)
    gmm.fit(samples.reshape(-1,1))
    # return params of GMM in [(coeff, mu, sigma)] format:
    params = [(gmm.weights_[c], gmm.means_[c][0], gmm.covariances_[c][0][0]) for c in range(ncomponents)]
    return params
开发者ID:jts,项目名称:nanopolish,代码行数:8,代码来源:reestimate_polya_emissions.py

示例8: main

def main():
    X, Y = get_data(10000)
    print("Number of data points:", len(Y))

    model = GaussianMixture(n_components=10)
    model.fit(X)
    M = model.means_
    R = model.predict_proba(X)

    print("Purity:", purity(Y, R)) # max is 1, higher is better
    print("DBI:", DBI(X, M, R)) # lower is better
开发者ID:cmagnusb,项目名称:machine_learning_examples,代码行数:11,代码来源:gmm_mnist.py

示例9: fit_conditional_parameters

    def fit_conditional_parameters(self, j):
        class_wise_scores = self.get_class_wise_scores(j)
        
        class_wise_parameters = dict()
        for label in self._labels:
            gmm = GaussianMixture(n_components=1)
            gmm.fit(class_wise_scores[label].reshape(-1, 1))
            
            class_wise_parameters[label] = \
                self.Gaussian(mu=gmm.means_.flatten()[0],
                              std=np.sqrt(gmm.covariances_.flatten()[0]))

        return class_wise_parameters
开发者ID:chu-data-lab,项目名称:GOGGLES,代码行数:13,代码来源:kmeans.py

示例10: GaussianMixture1D

class GaussianMixture1D(object):
    """
    Simple class to work with 1D mixtures of Gaussians

    Parameters
    ----------
    means : array_like
        means of component distributions (default = 0)
    sigmas : array_like
        standard deviations of component distributions (default = 1)
    weights : array_like
        weight of component distributions (default = 1)
    """
    def __init__(self, means=0, sigmas=1, weights=1):
        data = np.array([t for t in np.broadcast(means, sigmas, weights)])

        components = data.shape[0]
        self._gmm = GaussianMixture(components, covariance_type='spherical')

        self._gmm.means_ = data[:, :1]
        self._gmm.weights_ = data[:, 2] / data[:, 2].sum()
        self._gmm.covariances_ = data[:, 1] ** 2

        self._gmm.precisions_cholesky_ = 1 / np.sqrt(self._gmm.covariances_)

        self._gmm.fit = None  # disable fit method for safety

    def sample(self, size):
        """Random sample"""
        return self._gmm.sample(size)

    def pdf(self, x):
        """Compute probability distribution"""

        if x.ndim == 1:
            x = x[:, np.newaxis]
        logprob = self._gmm.score_samples(x)
        return np.exp(logprob)

    def pdf_individual(self, x):
        """Compute probability distribution of each component"""

        if x.ndim == 1:
            x = x[:, np.newaxis]
        logprob = self._gmm.score_samples(x)
        responsibilities = self._gmm.predict_proba(x)
        return responsibilities * np.exp(logprob[:, np.newaxis])
开发者ID:astroML,项目名称:astroML,代码行数:47,代码来源:gauss_mixture.py

示例11: fit

  def fit(self, X, Y=None):
    if self.method == 'random':
      N = len(X)
      idx = np.random.randint(N, size=self.M)
      self.samples = X[idx]
    elif self.method == 'normal':
      # just sample from N(0,1)
      D = X.shape[1]
      self.samples = np.random.randn(self.M, D) / np.sqrt(D)
    elif self.method == 'kmeans':
      X, Y = self._subsample_data(X, Y)

      print("Fitting kmeans...")
      t0 = datetime.now()
      kmeans = KMeans(n_clusters=len(set(Y)))
      kmeans.fit(X)
      print("Finished fitting kmeans, duration:", datetime.now() - t0)

      # calculate the most ambiguous points
      # we will do this by finding the distance between each point
      # and all cluster centers
      # and return which points have the smallest variance
      dists = kmeans.transform(X) # returns an N x K matrix
      variances = dists.var(axis=1)
      idx = np.argsort(variances) # smallest to largest
      idx = idx[:self.M]
      self.samples = X[idx]
    elif self.method == 'gmm':
      X, Y = self._subsample_data(X, Y)

      print("Fitting GMM")
      t0 = datetime.now()
      gmm = GaussianMixture(
        n_components=len(set(Y)),
        covariance_type='spherical',
        reg_covar=1e-6)
      gmm.fit(X)
      print("Finished fitting GMM, duration:", datetime.now() - t0)

      # calculate the most ambiguous points
      probs = gmm.predict_proba(X)
      ent = stats.entropy(probs.T) # N-length vector of entropies
      idx = np.argsort(-ent) # negate since we want biggest first
      idx = idx[:self.M]
      self.samples = X[idx]
    return self
开发者ID:lazyprogrammer,项目名称:machine_learning_examples,代码行数:46,代码来源:fake_neural_net.py

示例12: finish

    def finish(self):
        print("Calculating mean ToT for each PMT from gaussian fits...")
        gmm = GaussianMixture()
        xs, ys = [], []
        for (dom_id, channel_id), tots in self.tot_data.iteritems():
            dom = self.db.doms.via_dom_id(dom_id)
            gmm.fit(np.array(tots)[:, np.newaxis]).means_[0][0]
            mean_tot = gmm.means_[0][0]
            xs.append(31 * (dom.floor - 1) + channel_id + 600 * (dom.du - 1))
            ys.append(mean_tot)

        fig, ax = plt.subplots()
        ax.scatter(xs, ys, marker="+")
        ax.set_xlabel("31$\cdot$(floor - 1) + channel_id + 600$\cdot$(DU - 1)")
        ax.set_ylabel("ToT [ns]")
        plt.title("Mean ToT per PMT")
        plt.savefig(self.plotfilename)
开发者ID:tamasgal,项目名称:km3pipe,代码行数:17,代码来源:meantots.py

示例13: Recognize

    def Recognize(self, fn):
        im = Image.open(fn)
        im = util.CenterExtend(im, radius=20)

        vec = np.asarray(im.convert('L')).copy()
        Y = []
        for i in range(vec.shape[0]):
            for j in range(vec.shape[1]):
                if vec[i][j] <= 200:
                    Y.append([i, j])

        gmm = GaussianMixture(n_components=7, covariance_type='tied', reg_covar=1e2, tol=1e3, n_init=9)
        gmm.fit(Y)
        
        centers = gmm.means_

        points = []
        for i in range(7):
            scoring = 0.0
            for w_i in range(3):
                for w_j in range(3):
                    p_x = centers[i][0] -1 +w_i
                    p_y = centers[i][1] -1 +w_j

                    cr = util.crop(im, p_x, p_y, radius=20)
                    cr = cr.resize((40, 40), Image.ANTIALIAS)

                    X = np.asarray(cr.convert('L'), dtype='float')
                    X = (X.astype("float") - 180) /200

                    x0 = np.expand_dims(X, axis=0)
                    x1 = np.expand_dims(x0, axis=3)

                    global model
                    if self.model.predict(x1)[0][0] < 0.5:
                        scoring += 1

            if scoring > 4:
                points.append((centers[i][0] -20, centers[i][1] -20))
                
        return points
开发者ID:jianghobryan,项目名称:zheye,代码行数:41,代码来源:__init__.py

示例14: __init__

    def __init__(self, means=0, sigmas=1, weights=1):
        data = np.array([t for t in np.broadcast(means, sigmas, weights)])

        components = data.shape[0]
        self._gmm = GaussianMixture(components, covariance_type='spherical')

        self._gmm.means_ = data[:, :1]
        self._gmm.weights_ = data[:, 2] / data[:, 2].sum()
        self._gmm.covariances_ = data[:, 1] ** 2

        self._gmm.precisions_cholesky_ = 1 / np.sqrt(self._gmm.covariances_)

        self._gmm.fit = None  # disable fit method for safety
开发者ID:astroML,项目名称:astroML,代码行数:13,代码来源:gauss_mixture.py

示例15: fit

    def fit(self, X_train, y_train):
        X_train = np.asarray(X_train)
        y_train = np.asarray(y_train)
        # from sklearn.mixture import GMM as GaussianMixture
        from sklearn.mixture import GaussianMixture

        unlabels = range(0, np.max(y_train) + 1)

        for lab in unlabels:
            if self.each_class_params is not None:
                # print 'eacl'
                # print self.each_class_params[lab]
                model = GaussianMixture(**self.each_class_params[lab])
                # print 'po gmm ', model
            elif len(self.same_params) > 0:
                model = GaussianMixture(**self.same_params)
                # print 'ewe ', model
            else:
                model = GaussianMixture()
            X_train_lab = X_train[y_train == lab]
            # logger.debug('xtr lab shape ' + str(X_train_lab))
            model.fit(X_train_lab)

            self.models.insert(lab, model)
开发者ID:mjirik,项目名称:lisa,代码行数:24,代码来源:classification.py


注:本文中的sklearn.mixture.GaussianMixture类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。