当前位置: 首页>>代码示例>>Python>>正文


Python GaussianMixture.predict_proba方法代码示例

本文整理汇总了Python中sklearn.mixture.GaussianMixture.predict_proba方法的典型用法代码示例。如果您正苦于以下问题:Python GaussianMixture.predict_proba方法的具体用法?Python GaussianMixture.predict_proba怎么用?Python GaussianMixture.predict_proba使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.mixture.GaussianMixture的用法示例。


在下文中一共展示了GaussianMixture.predict_proba方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: from sklearn.mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.GaussianMixture import predict_proba [as 别名]
def main():
    Xtrain, Ytrain, Xtest, Ytest = getKaggleMNIST()
    dae = DeepAutoEncoder([500, 300, 2])
    dae.fit(Xtrain)
    mapping = dae.map2center(Xtrain)
    plt.scatter(mapping[:,0], mapping[:,1], c=Ytrain, s=100, alpha=0.5)
    plt.show()

    # purity measure from unsupervised machine learning pt 1
    gmm = GaussianMixture(n_components=10)
    gmm.fit(Xtrain)
    responsibilities_full = gmm.predict_proba(Xtrain)
    print "full purity:", purity(Ytrain, responsibilities_full)

    gmm.fit(mapping)
    responsibilities_reduced = gmm.predict_proba(mapping)
    print "reduced purity:", purity(Ytrain, responsibilities_reduced)
开发者ID:ShuvenduBikash,项目名称:machine_learning_examples,代码行数:19,代码来源:xwing.py

示例2: main

# 需要导入模块: from sklearn.mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.GaussianMixture import predict_proba [as 别名]
def main():
    Xtrain, Ytrain, Xtest, Ytest = getKaggleMNIST()
    dae = DeepAutoEncoder([500, 300, 2])
    dae.fit(Xtrain)
    mapping = dae.map2center(Xtrain)
    plt.scatter(mapping[:,0], mapping[:,1], c=Ytrain, s=100, alpha=0.5)
    plt.show()

    # purity measure from unsupervised machine learning pt 1
    # NOTE: this will take a long time (i.e. just leave it overnight)
    gmm = GaussianMixture(n_components=10)
    gmm.fit(Xtrain)
    print("Finished GMM training")
    responsibilities_full = gmm.predict_proba(Xtrain)
    print("full purity:", purity(Ytrain, responsibilities_full))

    gmm.fit(mapping)
    responsibilities_reduced = gmm.predict_proba(mapping)
    print("reduced purity:", purity(Ytrain, responsibilities_reduced))
开发者ID:cmagnusb,项目名称:machine_learning_examples,代码行数:21,代码来源:xwing.py

示例3: main

# 需要导入模块: from sklearn.mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.GaussianMixture import predict_proba [as 别名]
def main():
    X, Y = get_data(10000)
    print("Number of data points:", len(Y))

    model = GaussianMixture(n_components=10)
    model.fit(X)
    M = model.means_
    R = model.predict_proba(X)

    print("Purity:", purity(Y, R)) # max is 1, higher is better
    print("DBI:", DBI(X, M, R)) # lower is better
开发者ID:cmagnusb,项目名称:machine_learning_examples,代码行数:13,代码来源:gmm_mnist.py

示例4: GaussianMixture1D

# 需要导入模块: from sklearn.mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.GaussianMixture import predict_proba [as 别名]
class GaussianMixture1D(object):
    """
    Simple class to work with 1D mixtures of Gaussians

    Parameters
    ----------
    means : array_like
        means of component distributions (default = 0)
    sigmas : array_like
        standard deviations of component distributions (default = 1)
    weights : array_like
        weight of component distributions (default = 1)
    """
    def __init__(self, means=0, sigmas=1, weights=1):
        data = np.array([t for t in np.broadcast(means, sigmas, weights)])

        components = data.shape[0]
        self._gmm = GaussianMixture(components, covariance_type='spherical')

        self._gmm.means_ = data[:, :1]
        self._gmm.weights_ = data[:, 2] / data[:, 2].sum()
        self._gmm.covariances_ = data[:, 1] ** 2

        self._gmm.precisions_cholesky_ = 1 / np.sqrt(self._gmm.covariances_)

        self._gmm.fit = None  # disable fit method for safety

    def sample(self, size):
        """Random sample"""
        return self._gmm.sample(size)

    def pdf(self, x):
        """Compute probability distribution"""

        if x.ndim == 1:
            x = x[:, np.newaxis]
        logprob = self._gmm.score_samples(x)
        return np.exp(logprob)

    def pdf_individual(self, x):
        """Compute probability distribution of each component"""

        if x.ndim == 1:
            x = x[:, np.newaxis]
        logprob = self._gmm.score_samples(x)
        responsibilities = self._gmm.predict_proba(x)
        return responsibilities * np.exp(logprob[:, np.newaxis])
开发者ID:astroML,项目名称:astroML,代码行数:49,代码来源:gauss_mixture.py

示例5: fit

# 需要导入模块: from sklearn.mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.GaussianMixture import predict_proba [as 别名]
  def fit(self, X, Y=None):
    if self.method == 'random':
      N = len(X)
      idx = np.random.randint(N, size=self.M)
      self.samples = X[idx]
    elif self.method == 'normal':
      # just sample from N(0,1)
      D = X.shape[1]
      self.samples = np.random.randn(self.M, D) / np.sqrt(D)
    elif self.method == 'kmeans':
      X, Y = self._subsample_data(X, Y)

      print("Fitting kmeans...")
      t0 = datetime.now()
      kmeans = KMeans(n_clusters=len(set(Y)))
      kmeans.fit(X)
      print("Finished fitting kmeans, duration:", datetime.now() - t0)

      # calculate the most ambiguous points
      # we will do this by finding the distance between each point
      # and all cluster centers
      # and return which points have the smallest variance
      dists = kmeans.transform(X) # returns an N x K matrix
      variances = dists.var(axis=1)
      idx = np.argsort(variances) # smallest to largest
      idx = idx[:self.M]
      self.samples = X[idx]
    elif self.method == 'gmm':
      X, Y = self._subsample_data(X, Y)

      print("Fitting GMM")
      t0 = datetime.now()
      gmm = GaussianMixture(
        n_components=len(set(Y)),
        covariance_type='spherical',
        reg_covar=1e-6)
      gmm.fit(X)
      print("Finished fitting GMM, duration:", datetime.now() - t0)

      # calculate the most ambiguous points
      probs = gmm.predict_proba(X)
      ent = stats.entropy(probs.T) # N-length vector of entropies
      idx = np.argsort(-ent) # negate since we want biggest first
      idx = idx[:self.M]
      self.samples = X[idx]
    return self
开发者ID:lazyprogrammer,项目名称:machine_learning_examples,代码行数:48,代码来源:fake_neural_net.py

示例6: expand

# 需要导入模块: from sklearn.mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.GaussianMixture import predict_proba [as 别名]
    x1_min, x1_max = expand(x1_min, x1_max)
    x2_min, x2_max = expand(x2_min, x2_max)
    x1, x2 = np.mgrid[x1_min:x1_max:500j, x2_min:x2_max:500j]
    grid_test = np.stack((x1.flat, x2.flat), axis=1)
    grid_hat = gmm.predict(grid_test)
    grid_hat = grid_hat.reshape(x1.shape)
    if change:
        z = grid_hat == 0
        grid_hat[z] = 1
        grid_hat[~z] = 0
    plt.figure(figsize=(7, 6), facecolor='w')
    plt.pcolormesh(x1, x2, grid_hat, cmap=cm_light)
    plt.scatter(x[:, 0], x[:, 1], s=50, c=y, marker='o', cmap=cm_dark, edgecolors='k')
    plt.scatter(x_test[:, 0], x_test[:, 1], s=60, c=y_test, marker='^', cmap=cm_dark, edgecolors='k')

    p = gmm.predict_proba(grid_test)
    print(p)
    p = p[:, 0].reshape(x1.shape)
    CS = plt.contour(x1, x2, p, levels=(0.1, 0.5, 0.8), colors=list('rgb'), linewidths=2)
    plt.clabel(CS, fontsize=12, fmt='%.1f', inline=True)
    ax1_min, ax1_max, ax2_min, ax2_max = plt.axis()
    xx = 0.95*ax1_min + 0.05*ax1_max
    yy = 0.05*ax2_min + 0.95*ax2_max
    plt.text(xx, yy, acc_str, fontsize=12)
    yy = 0.1*ax2_min + 0.9*ax2_max
    plt.text(xx, yy, acc_test_str, fontsize=12)
    plt.xlim((x1_min, x1_max))
    plt.ylim((x2_min, x2_max))
    plt.xlabel('身高(cm)', fontsize=13)
    plt.ylabel('体重(kg)', fontsize=13)
    plt.title('EM算法估算GMM的参数', fontsize=15)
开发者ID:wEEang763162,项目名称:machine_learning_zoubo,代码行数:33,代码来源:20.2.GMM.py

示例7: gaussian_overlap

# 需要导入模块: from sklearn.mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.GaussianMixture import predict_proba [as 别名]
def gaussian_overlap(w1, w2):
    '''
    estimate cluster overlap from a 2-mean Gaussian mixture model

    Description  
    -------
    Estimates the overlap between 2 spike clusters by fitting with two
    multivariate Gaussians.  Implementation makes use of scikit learn 'GMM'. 

    The percent of false positive and false negative errors are estimated for 
    both classes and stored as a confusion matrix. Error rates are calculated 
    by integrating the posterior probability of a misclassification.  The 
    integral is then normalized by the number of events in the cluster of
    interest. See description of confusion matrix below.

    NOTE: The dimensionality of the data set is reduced to the top 99% of 
    principal components to increase the time efficiency of the fitting
    algorithm.

    Parameters
    --------
    w1 : array-like [Event x Sample ] 
        waveforms of 1st cluster
    w2 : array-like [Event x Sample ] 
        waveforms of 2nd cluster

    Returns
    ------
    C 
        a confusion matrix

    C[0,0] - False positive fraction in cluster 1 (waveforms of neuron 2 that were assigned to neuron 1)
    C[0,1] - False negative fraction in cluster 1 (waveforms of neuron 1 that were assigned to neuron 2)
    C[1,0] - False negative fraction in cluster 2 
    C[1,1] - False positive fraction in cluster 2
    '''
    # reduce dimensionality to 98% of top Principal Components
    N1 = w1.shape[0]
    N2 = w2.shape[0]

    X = np.concatenate((w1, w2))
    pca = PCA()
    pca.fit(X)
    Xn = pca.transform(X)

    cutoff = 0.98
    num_dims = (np.cumsum(pca.explained_variance_ratio_) < cutoff).sum()

    w1 = Xn[:N1, :num_dims]
    w2 = Xn[N1:, :num_dims]

    # fit 2 multivariate gaussians
    gmm = GMM(n_components=2)
    gmm.fit(np.vstack((w1, w2)))

    # get posteriors
    pr1 = gmm.predict_proba(w1)
    pr2 = gmm.predict_proba(w2)

    # in the unlikely case that the cluster identities were flipped during the
    # fitting procedure, flip them back
    if pr1[:, 0].mean() + pr2[:, 1].mean() < 1:
        pr1 = pr1[:, [1, 0]]
        pr2 = pr2[:, [1, 0]]

    # create confusion matrix
    confusion = np.zeros((2, 2))

    confusion[0, 0] = pr1[:, 1].mean()   # probability that a member of 1 is false
    # relative proportion of spikes that were placed in cluster 2 by mistake
    confusion[0, 1] = pr2[:, 0].sum() / N1
    confusion[1, 1] = pr2[:, 0].mean()   # probability that a member of 2 was really from 1
    # relative proportion of spikes that were placed in cluster 1 by mistake
    confusion[1, 0] = pr1[:, 1].sum() / N2

    return confusion
开发者ID:gentnerlab,项目名称:ephys-analysis,代码行数:78,代码来源:ums2k.py


注:本文中的sklearn.mixture.GaussianMixture.predict_proba方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。