当前位置: 首页>>代码示例>>Python>>正文


Python GaussianMixture._estimate_weighted_log_prob方法代码示例

本文整理汇总了Python中sklearn.mixture.GaussianMixture._estimate_weighted_log_prob方法的典型用法代码示例。如果您正苦于以下问题:Python GaussianMixture._estimate_weighted_log_prob方法的具体用法?Python GaussianMixture._estimate_weighted_log_prob怎么用?Python GaussianMixture._estimate_weighted_log_prob使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.mixture.GaussianMixture的用法示例。


在下文中一共展示了GaussianMixture._estimate_weighted_log_prob方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: LinearDiscriminantAnalysis

# 需要导入模块: from sklearn.mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.GaussianMixture import _estimate_weighted_log_prob [as 别名]
X_score_tsne = tsne.fit_transform(X_score)
# ====== lda ====== #
lda = LinearDiscriminantAnalysis(n_components=NUM_DIM)
lda.fit(X_train, y_train)
X_train_lda = lda.transform(X_train)
X_score_lda = lda.transform(X_score)
# ====== plda ====== #
plda = PLDA(n_phi=NUM_DIM, random_state=SEED)
plda.fit(X_train, y_train)
X_train_plda = plda.predict_log_proba(X_train)
X_score_plda = plda.predict_log_proba(X_score)
# ====== gmm ====== #
gmm = GaussianMixture(n_components=NUM_DIM, max_iter=100, covariance_type='full',
                      random_state=SEED)
gmm.fit(X_train)
X_train_gmm = gmm._estimate_weighted_log_prob(X_train)
X_score_gmm = gmm._estimate_weighted_log_prob(X_score)
# ====== rbm ====== #
rbm = BernoulliRBM(n_components=NUM_DIM, batch_size=8, learning_rate=0.0008,
                   n_iter=8, verbose=2, random_state=SEED)
rbm.fit(X_train)
X_train_rbm = rbm.transform(X_train)
X_score_rbm = rbm.transform(X_score)
# ===========================================================================
# Deep Learning
# ===========================================================================

# ===========================================================================
# Visualize
# ===========================================================================
def plot(train, score, title, applying_pca=False):
开发者ID:imito,项目名称:odin,代码行数:33,代码来源:iris_latent_space.py


注:本文中的sklearn.mixture.GaussianMixture._estimate_weighted_log_prob方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。