当前位置: 首页>>代码示例>>Python>>正文


Python LibSVM.set_epsilon方法代码示例

本文整理汇总了Python中shogun.Classifier.LibSVM.set_epsilon方法的典型用法代码示例。如果您正苦于以下问题:Python LibSVM.set_epsilon方法的具体用法?Python LibSVM.set_epsilon怎么用?Python LibSVM.set_epsilon使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在shogun.Classifier.LibSVM的用法示例。


在下文中一共展示了LibSVM.set_epsilon方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: libsvm

# 需要导入模块: from shogun.Classifier import LibSVM [as 别名]
# 或者: from shogun.Classifier.LibSVM import set_epsilon [as 别名]
def libsvm ():
	print 'LibSVM'

	from shogun.Features import RealFeatures, Labels
	from shogun.Kernel import GaussianKernel
	from shogun.Evaluation import PerformanceMeasures
	from shogun.Classifier import LibSVM

	feats_train=RealFeatures(fm_train_real)
	feats_test=RealFeatures(fm_test_real)

	width=2.1
	kernel=GaussianKernel(feats_train, feats_train, width)

	C=1
	epsilon=1e-5
	labels=Labels(label_train_twoclass)

	svm=LibSVM(C, kernel, labels)
	svm.set_epsilon(epsilon)
	svm.train()

	#kernel.init(feats_train, feats_test)
	output = svm.classify(feats_test)#.get_labels()
        #output_vector = output.get_labels()
        out=svm.classify().get_labels()
        testerr=mean(sign(out)!=testlab)
        print testerr
开发者ID:BrainTech,项目名称:openbci,代码行数:30,代码来源:svm.py

示例2: classifier_multiclassmachine_modular

# 需要导入模块: from shogun.Classifier import LibSVM [as 别名]
# 或者: from shogun.Classifier.LibSVM import set_epsilon [as 别名]
def classifier_multiclassmachine_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_multiclass=label_traindat,width=2.1,C=1,epsilon=1e-5):
	from shogun.Features import RealFeatures, Labels
	from shogun.Kernel import GaussianKernel
	from shogun.Classifier import LibSVM, KernelMulticlassMachine, ONE_VS_REST_STRATEGY

	feats_train=RealFeatures(fm_train_real)
	feats_test=RealFeatures(fm_test_real)
	kernel=GaussianKernel(feats_train, feats_train, width)

	labels=Labels(label_train_multiclass)

	classifier = LibSVM(C, kernel, labels)
	classifier.set_epsilon(epsilon)
	mc_classifier = KernelMulticlassMachine(ONE_VS_REST_STRATEGY,kernel,classifier,labels)
	mc_classifier.train()

	kernel.init(feats_train, feats_test)
	out = mc_classifier.apply().get_labels()
	return out
开发者ID:ashish-sadh,项目名称:shogun,代码行数:21,代码来源:classifier_multiclassmachine_modular.py

示例3: classifier_multiclassmachine_modular

# 需要导入模块: from shogun.Classifier import LibSVM [as 别名]
# 或者: from shogun.Classifier.LibSVM import set_epsilon [as 别名]
def classifier_multiclassmachine_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_multiclass=label_traindat,width=2.1,C=1,epsilon=1e-5):
	from shogun.Features import RealFeatures, MulticlassLabels
	from shogun.Kernel import GaussianKernel
	from shogun.Classifier import LibSVM, KernelMulticlassMachine, MulticlassOneVsRestStrategy

	feats_train=RealFeatures(fm_train_real)
	feats_test=RealFeatures(fm_test_real)
	kernel=GaussianKernel(feats_train, feats_train, width)

	labels=MulticlassLabels(label_train_multiclass)

	classifier = LibSVM()
	classifier.set_epsilon(epsilon)
	#print labels.get_labels()
	mc_classifier = KernelMulticlassMachine(MulticlassOneVsRestStrategy(),kernel,classifier,labels)
	mc_classifier.train()

	kernel.init(feats_train, feats_test)
	out = mc_classifier.apply().get_labels()
	return out
开发者ID:lgatto,项目名称:shogun,代码行数:22,代码来源:classifier_multiclassmachine_modular.py

示例4: classifier_libsvm_modular

# 需要导入模块: from shogun.Classifier import LibSVM [as 别名]
# 或者: from shogun.Classifier.LibSVM import set_epsilon [as 别名]
def classifier_libsvm_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_twoclass=label_traindat,width=2.1,C=1,epsilon=1e-5):
	from shogun.Features import RealFeatures, Labels
	from shogun.Kernel import GaussianKernel
	from shogun.Classifier import LibSVM

	feats_train=RealFeatures(fm_train_real)
	feats_test=RealFeatures(fm_test_real)
	
	kernel=GaussianKernel(feats_train, feats_train, width)
	labels=Labels(label_train_twoclass)

	svm=LibSVM(C, kernel, labels)
	svm.set_epsilon(epsilon)
	svm.train()

	kernel.init(feats_train, feats_test)
	labels = svm.apply().get_labels()
	supportvectors = sv_idx=svm.get_support_vectors()
	alphas=svm.get_alphas()
	predictions = svm.apply()
	return predictions, svm, predictions.get_labels()
开发者ID:harshitsyal,项目名称:shogun,代码行数:23,代码来源:classifier_libsvm_modular.py

示例5: libsvm

# 需要导入模块: from shogun.Classifier import LibSVM [as 别名]
# 或者: from shogun.Classifier.LibSVM import set_epsilon [as 别名]
def libsvm ():
	print 'LibSVM'

	from shogun.Features import RealFeatures, Labels
	from shogun.Kernel import GaussianKernel
	from shogun.Classifier import LibSVM

	feats_train=RealFeatures(fm_train_real)
	feats_test=RealFeatures(fm_test_real)
	width=2.1
	kernel=GaussianKernel(feats_train, feats_train, width)

	C=1
	epsilon=1e-5
	labels=Labels(label_train_twoclass)

	svm=LibSVM(C, kernel, labels)
	svm.set_epsilon(epsilon)
	svm.train()

	kernel.init(feats_train, feats_test)
	svm.classify().get_labels()
	sv_idx=svm.get_support_vectors()
	alphas=svm.get_alphas()
开发者ID:memimo,项目名称:shogun-liblinear,代码行数:26,代码来源:classifier_libsvm_modular.py

示例6: xrange

# 需要导入模块: from shogun.Classifier import LibSVM [as 别名]
# 或者: from shogun.Classifier.LibSVM import set_epsilon [as 别名]
from shogun.Features import RealFeatures, Labels
from shogun.Kernel import LinearKernel


num_feats=23
num_vec=42

scale=2.1
size_cache=10

C=0.017
epsilon=1e-5
tube_epsilon=1e-2
svm=LibSVM()
svm.set_C(C, C)
svm.set_epsilon(epsilon)
svm.set_tube_epsilon(tube_epsilon)

for i in xrange(3):
	data_train=random.rand(num_feats, num_vec)
	data_test=random.rand(num_feats, num_vec)
	feats_train=RealFeatures(data_train)
	feats_test=RealFeatures(data_test)
	labels=Labels(random.rand(num_vec).round()*2-1)

	svm.set_kernel(LinearKernel(size_cache, scale))
	svm.set_labels(labels)

	kernel=svm.get_kernel()
	print "kernel cache size: %s" % (kernel.get_cache_size())
开发者ID:42MachineLearning,项目名称:shogun,代码行数:32,代码来源:test_svm_kernel_multiple.py


注:本文中的shogun.Classifier.LibSVM.set_epsilon方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。