本文整理汇总了Python中shogun.Classifier.LibSVM.print_modsel_params方法的典型用法代码示例。如果您正苦于以下问题:Python LibSVM.print_modsel_params方法的具体用法?Python LibSVM.print_modsel_params怎么用?Python LibSVM.print_modsel_params使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类shogun.Classifier.LibSVM
的用法示例。
在下文中一共展示了LibSVM.print_modsel_params方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: modelselection_grid_search_kernel
# 需要导入模块: from shogun.Classifier import LibSVM [as 别名]
# 或者: from shogun.Classifier.LibSVM import print_modsel_params [as 别名]
def modelselection_grid_search_kernel():
num_subsets=3
num_vectors=20
dim_vectors=3
# create some (non-sense) data
matrix=rand(dim_vectors, num_vectors)
# create num_feautres 2-dimensional vectors
features=RealFeatures()
features.set_feature_matrix(matrix)
# create labels, two classes
labels=BinaryLabels(num_vectors)
for i in range(num_vectors):
labels.set_label(i, 1 if i%2==0 else -1)
# create svm
classifier=LibSVM()
# splitting strategy
splitting_strategy=StratifiedCrossValidationSplitting(labels, num_subsets)
# accuracy evaluation
evaluation_criterion=ContingencyTableEvaluation(ACCURACY)
# cross validation class for evaluation in model selection
cross=CrossValidation(classifier, features, labels, splitting_strategy, evaluation_criterion)
cross.set_num_runs(1)
# print all parameter available for modelselection
# Dont worry if yours is not included, simply write to the mailing list
classifier.print_modsel_params()
# model parameter selection
param_tree=create_param_tree()
param_tree.print_tree()
grid_search=GridSearchModelSelection(param_tree, cross)
print_state=True
best_combination=grid_search.select_model(print_state)
print("best parameter(s):")
best_combination.print_tree()
best_combination.apply_to_machine(classifier)
# larger number of runs to have tighter confidence intervals
cross.set_num_runs(10)
cross.set_conf_int_alpha(0.01)
result=cross.evaluate()
print("result: ")
result.print_result()
return 0