当前位置: 首页>>代码示例>>Python>>正文


Python Util.savePickle方法代码示例

本文整理汇总了Python中sandbox.util.Util.Util.savePickle方法的典型用法代码示例。如果您正苦于以下问题:Python Util.savePickle方法的具体用法?Python Util.savePickle怎么用?Python Util.savePickle使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sandbox.util.Util.Util的用法示例。


在下文中一共展示了Util.savePickle方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: computeLDA

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import savePickle [as 别名]
 def computeLDA(self):
     if not os.path.exists(self.modelFilename) or self.overwriteModel:
         self.vectoriseDocuments()
         self.loadVectoriser()
         corpus = gensim.corpora.mmcorpus.MmCorpus(self.docTermMatrixFilename + ".mtx")
         id2WordDict = dict(zip(range(len(self.vectoriser.get_feature_names())), self.vectoriser.get_feature_names()))   
         
         logging.getLogger('gensim').setLevel(logging.INFO)
         lda = LdaModel(corpus, num_topics=self.k, id2word=id2WordDict, chunksize=self.chunksize, distributed=False) 
         #index = gensim.similarities.docsim.SparseMatrixSimilarity(lda[corpus], num_features=self.k) 
         index = gensim.similarities.docsim.Similarity(self.indexFilename, lda[corpus], num_features=self.k)            
         
         Util.savePickle([lda, index], self.modelFilename, debug=True)
         gc.collect()
     else: 
         logging.debug("File already exists: " + self.modelFilename)
开发者ID:charanpald,项目名称:wallhack,代码行数:18,代码来源:ArnetMinerDataset.py

示例2: computeConfigScalarStats

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import savePickle [as 别名]
def computeConfigScalarStats():
    logging.info("Computing configuration model scalar stats")

    graphFileNameBase = resultsDir + "ConfigInfectGraph"
    resultsFileNameBase = resultsDir + "ConfigInfectGraphScalarStats"

    for j in range(numConfigGraphs):
        resultsFileName = resultsFileNameBase + str(j)

        if not os.path.isfile(resultsFileName):
            configGraph = SparseGraph.load(graphFileNameBase + str(j))
            statsArray = graphStats.sequenceScalarStats(configGraph, subgraphIndicesList, slowStats, treeStats=True)
            Util.savePickle(statsArray, resultsFileName, True)
            gc.collect()

    logging.info("All done")
开发者ID:charanpald,项目名称:wallhack,代码行数:18,代码来源:InfectGrowthStatistics.py

示例3: computeConfigVectorStats

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import savePickle [as 别名]
def computeConfigVectorStats():
    #Note: We can make this multithreaded
    logging.info("Computing configuration model vector stats")

    graphFileNameBase = resultsDir + "ConfigInfectGraph"
    resultsFileNameBase = resultsDir + "ConfigInfectGraphVectorStats"

    for j in range(numConfigGraphs):
        resultsFileName = resultsFileNameBase + str(j)

        if not os.path.isfile(resultsFileName):
            configGraph = SparseGraph.load(graphFileNameBase + str(j))
            statsDictList = graphStats.sequenceVectorStats(configGraph, subgraphIndicesList2, eigenStats=False, treeStats=True)
            Util.savePickle(statsDictList, resultsFileName, False)
            gc.collect()

    logging.info("All done")
开发者ID:charanpald,项目名称:wallhack,代码行数:19,代码来源:InfectGrowthStatistics.py

示例4: coauthorsGraph

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import savePickle [as 别名]
    def coauthorsGraph(self, field, relevantExperts): 
        """
        Using the relevant authors we find all coauthors. 
        """  
        if not os.path.exists(self.getCoauthorsFilename(field)) or self.overwriteGraph: 
            logging.debug("Finding coauthors of relevant experts")
            if self.knownAuthors: 
                graph, authorIndexer = self.coauthorsGraphFromAuthors2(set(relevantExperts), field)
            else: 
                graph, authorIndexer = self.coauthorsGraphFromAuthors(set(relevantExperts))
            logging.debug(graph.summary())
            Util.savePickle([graph, authorIndexer], self.getCoauthorsFilename(field), debug=True)
        else: 
            logging.debug("Files already generated: " + self.getCoauthorsFilename(field))  

        graph, authorIndexer = Util.loadPickle(self.getCoauthorsFilename(field))
        return graph, authorIndexer 
开发者ID:charanpald,项目名称:wallhack,代码行数:19,代码来源:ArnetMinerDataset.py

示例5: plotOtherStats

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import savePickle [as 别名]
def plotOtherStats():
    #Let's look at geodesic distances in subgraphs and communities
    logging.info("Computing other stats")

    resultsFileName = resultsDir + "ContactGrowthOtherStats.pkl"
    hivGraphStats = HIVGraphStatistics(fInds)

    if saveResults:
        statsArray = hivGraphStats.sequenceScalarStats(sGraph, subgraphIndicesList)
        #statsArray["dayList"] = absDayList
        Util.savePickle(statsArray, resultsFileName, True)
    else:
        statsArray = Util.loadPickle(resultsFileName)
        #Just load the harmonic geodesic distances of the full graph 
        resultsFileName = resultsDir + "ContactGrowthScalarStats.pkl"
        statsArray2 = Util.loadPickle(resultsFileName)

        global plotInd

        msmGeodesic = statsArray[:, hivGraphStats.msmGeodesicIndex]
        msmGeodesic[msmGeodesic < 0] = 0
        msmGeodesic[msmGeodesic == float('inf')] = 0

        #Output all the results into plots
        plt.figure(plotInd)
        plt.plot(absDayList, msmGeodesic, 'k-', absDayList, statsArray[:, hivGraphStats.mostConnectedGeodesicIndex], 'k--')
        plt.xticks(locs, labels)
        #plt.ylim([0, 0.1])
        plt.xlabel("Year")
        plt.ylabel("Mean harmonic geodesic distance")
        plt.legend(("MSM individuals", "Top 10% degree"), loc="upper right")
        plt.savefig(figureDir + "MSM10Geodesic" + ".eps")
        plotInd += 1


        plt.figure(plotInd)
        plt.plot(absDayList, statsArray2[:, graphStats.harmonicGeoDistanceIndex], 'k-', absDayList, statsArray[:, hivGraphStats.menSubgraphGeodesicIndex], 'k--')
        plt.xticks(locs, labels)
        plt.ylim([0, 200.0])
        plt.xlabel("Year")
        plt.ylabel("Mean harmonic geodesic distance")
        plt.legend(("All individuals", "Men subgraph"), loc="upper right")
        plt.savefig(figureDir + "MenSubgraphGeodesic" + ".eps")
        plotInd += 1
开发者ID:charanpald,项目名称:wallhack,代码行数:46,代码来源:ContactGrowthStatistics.py

示例6: saveStats

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import savePickle [as 别名]
def saveStats(args):    
    i, theta = args 
    
    resultsFileName = outputDir + "SimStats" + str(i) + ".pkl"
    lock = FileLock(resultsFileName)
    
    if not lock.fileExists() and not lock.isLocked():    
        lock.lock()
         
        model = HIVModelUtils.createModel(targetGraph, startDate, endDate, recordStep, M, matchAlpha, breakSize, matchAlg, theta=thetaArray[i])
        times, infectedIndices, removedIndices, graph, compTimes, graphMetrics = HIVModelUtils.simulate(model)
        times = numpy.arange(startDate, endDate+1, recordStep)
        vertexArray, infectedIndices, removedIndices, contactGraphStats, removedGraphStats, finalRemovedDegrees = HIVModelUtils.generateStatistics(graph, times)
        stats = times, vertexArray, infectedIndices, removedGraphStats, finalRemovedDegrees, graphMetrics.objectives, compTimes
        
        Util.savePickle(stats, resultsFileName)
        lock.unlock()
    else: 
        logging.debug("Results already computed: " + str(resultsFileName))
开发者ID:charanpald,项目名称:wallhack,代码行数:21,代码来源:ProcessResults.py

示例7: computeLSI

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import savePickle [as 别名]
 def computeLSI(self):
     """
     Compute using the LSI version in gensim 
     """
     if not os.path.exists(self.modelFilename) or self.overwriteModel:
         self.vectoriseDocuments()
         self.loadVectoriser()
         #X = scipy.io.mmread(self.docTermMatrixFilename)
         #corpus = gensim.matutils.MmReader(self.docTermMatrixFilename + ".mtx", True)
         #corpus = gensim.matutils.Sparse2Corpus(X, documents_columns=False)
         corpus = gensim.corpora.mmcorpus.MmCorpus(self.docTermMatrixFilename + ".mtx")
         id2WordDict = dict(zip(range(len(self.vectoriser.get_feature_names())), self.vectoriser.get_feature_names()))   
         
         logging.getLogger('gensim').setLevel(logging.INFO)
         lsi = LsiModel(corpus, num_topics=self.k, id2word=id2WordDict, chunksize=self.chunksize, distributed=False) 
         index = gensim.similarities.docsim.Similarity(self.indexFilename, lsi[corpus], num_features=self.k)          
         
         Util.savePickle([lsi, index], self.modelFilename, debug=True)
         gc.collect()
     else: 
         logging.debug("File already exists: " + self.modelFilename)   
开发者ID:charanpald,项目名称:wallhack,代码行数:23,代码来源:ArnetMinerDataset.py

示例8: vectoriseDocuments

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import savePickle [as 别名]
 def vectoriseDocuments(self):
     """
     We want to go through the dataset and vectorise all the title+abstracts.
     The results are saved in TDIDF format in a matrix X. 
     """
     if not os.path.exists(self.docTermMatrixFilename + ".mtx") or not os.path.exists(self.authorListFilename) or not os.path.exists(self.vectoriserFilename) or self.overwriteVectoriser:
         logging.debug("Vectorising documents")            
         
         authorList, documentList, citationList = self.readAuthorsAndDocuments()
         Util.savePickle(authorList, self.authorListFilename, debug=True)
         Util.savePickle(citationList, self.citationListFilename, debug=True)
         
         #vectoriser = text.HashingVectorizer(ngram_range=(1,2), binary=self.binary, norm="l2", stop_words="english", tokenizer=PorterTokeniser(), dtype=numpy.float)
         
         #if self.tfidf: 
         logging.debug("Generating TFIDF features")
         vectoriser = text.TfidfVectorizer(min_df=self.minDf, ngram_range=(1,self.ngram), binary=self.binary, sublinear_tf=self.sublinearTf, norm="l2", max_df=0.95, stop_words="english", tokenizer=PorterTokeniser(), max_features=self.numFeatures, dtype=numpy.float)
         #else: 
         #    logging.debug("Generating bag of word features")
         #    vectoriser = text.CountVectorizer(min_df=self.minDf, ngram_range=(1,self.ngram), binary=False, max_df=0.95, stop_words="english", max_features=self.numFeatures, dtype=numpy.float, tokenizer=PorterTokeniser())            
         
         X = vectoriser.fit_transform(documentList)
         del documentList
         scipy.io.mmwrite(self.docTermMatrixFilename, X)
         logging.debug("Wrote X with shape " + str(X.shape) + " and " + str(X.nnz) + " nonzeros to file " + self.docTermMatrixFilename + ".mtx")
         del X 
             
         #Save vectoriser - note that we can't pickle the tokeniser so it needs to be reset when loaded 
         vectoriser.tokenizer = None 
         Util.savePickle(vectoriser, self.vectoriserFilename, debug=True) 
         del vectoriser  
         gc.collect()
     else: 
         logging.debug("Author list, document-term matrix and vectoriser already generated: ")   
开发者ID:charanpald,项目名称:wallhack,代码行数:36,代码来源:ArnetMinerDataset.py

示例9: range

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import savePickle [as 别名]
        paramList = []
        
        for i in range(thetaArray.shape[0]): 
            paramList.append((i, thetaArray[i, :]))
    
        pool = multiprocessing.Pool(multiprocessing.cpu_count())               
        resultIterator = pool.map(saveStats, paramList)  
        #resultIterator = map(saveStats, paramList)  
        pool.terminate()
    
        #Now save the statistics on the target graph 
        times = numpy.arange(startDate, endDate+1, recordStep)
        vertexArray, infectedIndices, removedIndices, contactGraphStats, removedGraphStats, finalRemovedDegrees = HIVModelUtils.generateStatistics(targetGraph, times)
        stats = vertexArray, infectedIndices, removedIndices, contactGraphStats, removedGraphStats, finalRemovedDegrees
        resultsFileName = outputDir + "IdealStats.pkl"
        Util.savePickle(stats, resultsFileName)
else:
    import matplotlib 
    matplotlib.use("GTK3Agg")
    import matplotlib.pyplot as plt     
    
    plotStyles = ['k-', 'kx-', 'k+-', 'k.-', 'k*-']
    
    N, resultsDir, outputDir, recordStep, startDate, endDate, prefix, targetGraph, breakSize, numEpsilons, M, matchAlpha, matchAlg, numInds = loadParams(0) 

    inds = range(numInds)
    numRecordSteps = int((endDate-startDate)/recordStep)+1
    
    #We store: number of detections, CT detections, rand detections, infectives, max componnent size, num components, edges, objectives
    numMeasures = 12
    numTimings = 2
开发者ID:charanpald,项目名称:wallhack,代码行数:33,代码来源:ProcessResults.py

示例10: plotVectorStats

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import savePickle [as 别名]
def plotVectorStats():
    #Finally, compute some vector stats at various points in the graph
    logging.info("Computing vector stats")
    global plotInd
    resultsFileName = resultsDir + "InfectGrowthVectorStats.pkl"

    if saveResults:
        statsDictList = graphStats.sequenceVectorStats(sGraph, subgraphIndicesList2, True)
        Util.savePickle(statsDictList, resultsFileName, True)
    else:
        statsDictList = Util.loadPickle(resultsFileName)

        treeSizesDistArray = numpy.zeros((len(dayList2), 3000))
        treeDepthsDistArray = numpy.zeros((len(dayList2), 100))
        numVerticesEdgesArray = numpy.zeros((len(dayList2), 2), numpy.int)
        numVerticesEdgesArray[:, 0] = [len(sgl) for sgl in subgraphIndicesList2]
        numVerticesEdgesArray[:, 1] = [sGraph.subgraph(sgl).getNumEdges() for sgl in subgraphIndicesList2]

        for j in range(len(dayList2)):
            dateStr = (str(DateUtils.getDateStrFromDay(dayList2[j], startYear)))
            logging.info(dateStr)
            statsDict = statsDictList[j]

            degreeDist = statsDict["outDegreeDist"]
            degreeDist = degreeDist/float(numpy.sum(degreeDist))

            maxEigVector = statsDict["maxEigVector"]
            maxEigVector = numpy.flipud(numpy.sort(numpy.abs(maxEigVector)))
            maxEigVector = numpy.log(maxEigVector[maxEigVector>0])

            treeSizesDist = statsDict["treeSizesDist"]
            treeSizesDist = numpy.array(treeSizesDist, numpy.float64)/numpy.sum(treeSizesDist)
            treeSizesDistArray[j, 0:treeSizesDist.shape[0]] = treeSizesDist

            treeDepthsDist = statsDict["treeDepthsDist"]
            #treeDepthsDist = numpy.array(treeDepthsDist, numpy.float64)/numpy.sum(treeDepthsDist)
            treeDepthsDist = numpy.array(treeDepthsDist, numpy.float64)
            treeDepthsDistArray[j, 0:treeDepthsDist.shape[0]] = treeDepthsDist

            plotInd2 = plotInd

            plt.figure(plotInd2)
            plt.plot(numpy.arange(degreeDist.shape[0]), degreeDist, label=dateStr)
            plt.xlabel("Degree")
            plt.ylabel("Probability")
            plt.ylim((0, 0.8))
            plt.legend()
            plt.savefig(figureDir + "DegreeDist" +  ".eps")
            plotInd2 += 1

            plt.figure(plotInd2)
            plt.scatter(numpy.arange(treeSizesDist.shape[0])[treeSizesDist!=0], numpy.log(treeSizesDist[treeSizesDist!=0]), s=30, c=plotStyles2[j][0], label=dateStr)
            plt.xlabel("Size")
            plt.ylabel("log(probability)")
            plt.xlim((0, 125))
            plt.legend()
            plt.savefig(figureDir + "TreeSizeDist" +  ".eps")
            plotInd2 += 1

            plt.figure(plotInd2)
            plt.scatter(numpy.arange(treeDepthsDist.shape[0])[treeDepthsDist!=0], numpy.log(treeDepthsDist[treeDepthsDist!=0]), s=30, c=plotStyles2[j][0], label=dateStr)
            plt.xlabel("Depth")
            plt.ylabel("log(probability)")
            plt.xlim((0, 15))
            plt.legend()
            plt.savefig(figureDir + "TreeDepthDist" +  ".eps")
            plotInd2 += 1

        dateStrList = [DateUtils.getDateStrFromDay(day, startYear) for day in dayList2]
        precision = 4 

        treeSizesDistArray = treeSizesDistArray[:, 0:treeSizesDist.shape[0]]
        nonZeroCols = numpy.sum(treeSizesDistArray, 0)!=0
        print((Latex.array1DToRow(numpy.arange(treeSizesDistArray.shape[1])[nonZeroCols])))
        print((Latex.array2DToRows(treeSizesDistArray[:, nonZeroCols])))

        print("Tree depths")
        treeDepthsDistArray = treeDepthsDistArray[:, 0:treeDepthsDist.shape[0]]
        nonZeroCols = numpy.sum(treeDepthsDistArray, 0)!=0
        print((Latex.array1DToRow(numpy.arange(treeDepthsDistArray.shape[1])[nonZeroCols])))
        print((Latex.array2DToRows(treeDepthsDistArray[:, nonZeroCols])))

        print(numpy.sum(treeDepthsDistArray[:, 0:3], 1))

        print("Edges and verticies")
        print(Latex.listToRow(dateStrList))
        print(Latex.array2DToRows(numVerticesEdgesArray.T, precision))
开发者ID:charanpald,项目名称:wallhack,代码行数:89,代码来源:InfectGrowthStatistics.py

示例11: plotScalarStats

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import savePickle [as 别名]
def plotScalarStats():
    logging.info("Computing scalar stats")
    resultsFileName = resultsDir + "InfectGrowthScalarStats.pkl"


    if saveResults:
        statsArray = graphStats.sequenceScalarStats(sGraph, subgraphIndicesList, treeStats=True)
        Util.savePickle(statsArray, resultsFileName, True)
    else:
        statsArray = Util.loadPickle(resultsFileName)

        global plotInd

        #Output all the results into plots
        #Take the mean of the results over the configuration model graphs
        resultsFileNameBase = resultsDir + "ConfigInfectGraphScalarStats"
        numGraphs = len(subgraphIndicesList)
        configStatsArrays = numpy.zeros((numGraphs, graphStats.getNumStats(), numConfigGraphs))

        for j in range(numConfigGraphs):
            resultsFileName = resultsFileNameBase + str(j)
            configStatsArrays[:, :, j] = Util.loadPickle(resultsFileName)

        configStatsArray = numpy.mean(configStatsArrays, 2)
        configStatsStd = numpy.std(configStatsArrays, 2)

        #Make sure we don't include 0 in the array
        vertexIndex = numpy.argmax(statsArray[:, graphStats.numVerticesIndex] > 0)
        edgeIndex = numpy.argmax(statsArray[:, graphStats.numEdgesIndex] > 0)
        minIndex = numpy.maximum(vertexIndex, edgeIndex)

        def plotRealConfigError(index, styleReal, styleConfig, realLabel, configLabel):
            plt.hold(True)
            plt.plot(absDayList, statsArray[:, index], styleReal, label=realLabel)
            #errors = numpy.c_[configStatsArray[:, index]-configStatsMinArray[:, index] , configStatsMaxArray[:, index]-configStatsArray[:, index]].T
            errors = numpy.c_[configStatsStd[:, index], configStatsStd[:, index]].T
            plt.plot(absDayList, configStatsArray[:, index], styleConfig, label=configLabel)
            plt.errorbar(absDayList, configStatsArray[:, index], errors, linewidth=0, elinewidth=0, label="_nolegend_", ecolor=styleConfig[0])

            xmin, xmax = plt.xlim()
            plt.xlim((0, xmax))
            ymin, ymax = plt.ylim()
            plt.ylim((0, ymax))

        plt.figure(plotInd)
        plt.plot(numpy.log(statsArray[minIndex:, graphStats.numVerticesIndex]), numpy.log(statsArray[minIndex:, graphStats.numEdgesIndex]))
        plt.xlabel("log(|V|)")
        plt.ylabel("log(|E|)")
        plt.savefig(figureDir + "LogVerticesEdgesGrowth.eps")
        plotInd += 1

        plt.figure(plotInd)
        #plt.plot(absDayList, statsArray[:, graphStats.numTreesIndex], plotStyles3[0], label="Trees Size >= 1")
        #plt.plot(absDayList, statsArray[:, graphStats.numNonSingletonTreesIndex], plotStyles3[1], label="Trees Size >= 2")
        plotRealConfigError(graphStats.numTreesIndex, plotStyles3[0], plotStyles5[0], "Trees size >= 1", "CM trees size >= 1")
        plotRealConfigError(graphStats.numNonSingletonTreesIndex, plotStyles3[0], plotStyles5[0], "Trees size >= 2", "CM trees size >= 2")
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("No. trees")
        plt.legend(loc="upper left")
        plt.savefig(figureDir + "NumTreesGrowth.eps")
        plotInd += 1

        for k in range(len(dayList)):
            day = dayList[k]
            print(str(DateUtils.getDateStrFromDay(day, startYear)) + ": " + str(statsArray[k, graphStats.numTreesIndex]))
            print(str(DateUtils.getDateStrFromDay(day, startYear)) + ": " + str(configStatsArray[k, graphStats.numTreesIndex]))


        #Load stats from a file to get the max tree from its root 
        resultsFilename = resultsDir + "treeSizesDepths.npz"
        file = open(resultsFilename, 'r')
        arrayDict = numpy.load(file)
        statsArray[:, graphStats.maxTreeDepthIndex] = arrayDict["arr_0"]
        statsArray[:, graphStats.maxTreeSizeIndex] = arrayDict["arr_1"]
        statsArray[:, graphStats.secondTreeDepthIndex] = arrayDict["arr_2"]
        statsArray[:, graphStats.secondTreeSizeIndex] = arrayDict["arr_3"]

        plt.figure(plotInd)
        plotRealConfigError(graphStats.maxTreeSizeIndex, plotStyles3[0], plotStyles5[0], "Max tree", "CM max tree")
        plotRealConfigError(graphStats.secondTreeSizeIndex, plotStyles3[1], plotStyles5[1], "2nd tree", "CM 2nd tree")
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("Size")
        plt.legend(loc="upper left")
        plt.savefig(figureDir + "MaxTreeGrowth.eps")
        plotInd += 1

        plt.figure(plotInd)
        plotRealConfigError(graphStats.maxTreeDepthIndex, plotStyles3[0], plotStyles5[0], "Max tree", "CM max tree")
        plotRealConfigError(graphStats.secondTreeDepthIndex, plotStyles3[1], plotStyles5[1], "2nd tree", "CM 2nd tree")
        #plt.plot(absDayList, statsArray[:, graphStats.maxTreeDepthIndex], plotStyles3[0], absDayList, statsArray[:, graphStats.secondTreeDepthIndex], plotStyles3[1] )
        #plt.plot(absDayList, configStatsArray[:, graphStats.maxTreeDepthIndex], plotStyles4[0], absDayList, configStatsArray[:, graphStats.secondTreeDepthIndex], plotStyles4[1])
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("Depth")
        plt.legend(loc="lower right")
        plt.savefig(figureDir + "MaxTreeDepthGrowth.eps")
        
        plotInd += 1
开发者ID:charanpald,项目名称:wallhack,代码行数:102,代码来源:InfectGrowthStatistics.py

示例12: plotTreeStats

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import savePickle [as 别名]
def plotTreeStats():
    logging.info("Computing tree stats")
    resultsFileName = resultsDir + "InfectGrowthTreeStats.pkl"

    if saveResults:
        statsDictList = []

        for j in range(len(subgraphIndicesList2)):
            Util.printIteration(j, 1, len(subgraphIndicesList2))
            subgraphIndices = subgraphIndicesList2[j]
            subgraph = sGraph.subgraph(subgraphIndices)
            logging.info("Finding trees")
            trees = subgraph.findTrees()
            logging.info("Computing tree statistics")
            statsDict = {}

            locationEntropy = []
            orientEntropy = []
            detectionRanges = []

            for i in range(len(trees)):
                if len(trees[i]) > 1:
                    treeGraph = subgraph.subgraph(trees[i])
                    vertexArray = treeGraph.getVertexList().getVertices(list(range(treeGraph.getNumVertices())))
                    
                    locationEntropy.append(Util.entropy(vertexArray[:, locationIndex]))
                    orientEntropy.append(Util.entropy(vertexArray[:, orientationIndex]))
                    
                    detections = vertexArray[:, detectionIndex]
                    detectionRanges.append(numpy.max(detections) - numpy.min(detections))

            statsDict["locationEnt"] = numpy.array(locationEntropy)
            statsDict["orientEnt"] = numpy.array(orientEntropy)
            statsDict["detectRanges"] = numpy.array(detectionRanges)
            statsDictList.append(statsDict)

        Util.savePickle(statsDictList, resultsFileName, True)
    else:
        statsDictList = Util.loadPickle(resultsFileName)
        
        locBins = numpy.arange(0, 2.4, 0.2)
        detectBins = numpy.arange(0, 6500, 500)
        locationEntDists = []
        orientEntDists = []
        detectionDists = [] 

        for j in range(0, len(dayList2)):
            dateStr = (str(DateUtils.getDateStrFromDay(dayList2[j], startYear)))
            logging.info(dateStr)
            statsDict = statsDictList[j]
            plotInd2 = plotInd

            locationEntDists.append(statsDict["locationEnt"])
            orientEntDists.append(statsDict["orientEnt"])
            detectionDists.append(statsDict["detectRanges"])

        #for j in range(len(orientEntDists)):
        #    print(numpy.sum(numpy.histogram(orientEntDists[j])[0]))
        #    print(numpy.histogram(orientEntDists[j])[0]/float(orientEntDists[j].shape[0]))

        dateStrs = [DateUtils.getDateStrFromDay(dayList2[i], startYear) for i in range(1, len(dayList2))]

        plt.figure(plotInd2)
        histOut = plt.hist(locationEntDists, locBins, normed=True)
        plt.xlabel("Location Entropy")
        plt.ylabel("Probability Density")
        plt.savefig(figureDir + "LocationEnt" +  ".eps")
        #plt.legend()
        plotInd2 += 1

        plt.figure(plotInd2)
        histOut = plt.hist(orientEntDists, normed=True)
        plt.xlabel("Orientation Entropy")
        plt.ylabel("Probability Density")
        plt.savefig(figureDir + "OrientEnt" +  ".eps")
        #plt.legend()
        plotInd2 += 1

        plt.figure(plotInd2)
        histOut = plt.hist(detectionDists, detectBins, normed=True)
        plt.xlabel("Detection Range (days)")
        plt.ylabel("Probability Density")
        plt.savefig(figureDir + "DetectionRanges" +  ".eps")
        #plt.legend()
        plotInd2 += 1
开发者ID:charanpald,项目名称:wallhack,代码行数:87,代码来源:InfectGrowthStatistics.py

示例13: len

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import savePickle [as 别名]
          
        #for line in outputLists:  
         #fich.write(line[i]) 
        #Ajout du score de l'expertise
        #outputLists.append(expertAuthorsInds)

         
        itemList = RankAggregator.generateItemList(outputLists)
        methodNames = graphRanker.getNames()
        
        if runLSI: 
            outputFilename = dataset.getOutputFieldDir(field) + "outputListsLSI.npz"
        else: 
            outputFilename = dataset.getOutputFieldDir(field) + "outputListsLDA.npz"
            
        Util.savePickle([outputLists, trainExpertMatchesInds, testExpertMatchesInds], outputFilename, debug=True)
        
        numMethods = len(outputLists)
        precisions = numpy.zeros((len(ns), numMethods))
        averagePrecisions = numpy.zeros(numMethods)
        
        for i, n in enumerate(ns):     
            for j in range(len(outputLists)): 
                precisions[i, j] = Evaluator.precisionFromIndLists(testExpertMatchesInds, outputLists[j][0:n]) 
            
        for j in range(len(outputLists)):                 
            averagePrecisions[j] = Evaluator.averagePrecisionFromLists(testExpertMatchesInds, outputLists[j][0:averagePrecisionN], averagePrecisionN) 
        
        precisions2 = numpy.c_[numpy.array(ns), precisions]
        
        logging.debug(Latex.listToRow(methodNames))
开发者ID:charanpald,项目名称:wallhack,代码行数:33,代码来源:ReputationExp3.py

示例14: plotVectorStats

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import savePickle [as 别名]
def plotVectorStats():
    #Finally, compute some vector stats at various points in the graph
    logging.info("Computing vector stats")
    global plotInd
    resultsFileName = resultsDir + "ContactGrowthVectorStats.pkl"

    if saveResults:
        statsDictList = graphStats.sequenceVectorStats(sGraph, subgraphIndicesList2)
        Util.savePickle(statsDictList, resultsFileName, False)
    else:
        statsDictList = Util.loadPickle(resultsFileName)

        #Load up configuration model results
        configStatsDictList = []
        resultsFileNameBase = resultsDir + "ConfigGraphVectorStats"

        for j in range(numConfigGraphs):
            resultsFileName = resultsFileNameBase + str(j)
            configStatsDictList.append(Util.loadPickle(resultsFileName))

        #Now need to take mean of 1st element of list
        meanConfigStatsDictList = configStatsDictList[0]
        for i in range(len(configStatsDictList[0])):
            for k in range(1, numConfigGraphs):
                for key in configStatsDictList[k][i].keys():
                    if configStatsDictList[k][i][key].shape[0] > meanConfigStatsDictList[i][key].shape[0]:
                        meanConfigStatsDictList[i][key] = numpy.r_[meanConfigStatsDictList[i][key], numpy.zeros(configStatsDictList[k][i][key].shape[0] - meanConfigStatsDictList[i][key].shape[0])]
                    elif configStatsDictList[k][i][key].shape[0] < meanConfigStatsDictList[i][key].shape[0]:
                        configStatsDictList[k][i][key] = numpy.r_[configStatsDictList[k][i][key], numpy.zeros(meanConfigStatsDictList[i][key].shape[0] - configStatsDictList[k][i][key].shape[0])]

                    meanConfigStatsDictList[i][key] += configStatsDictList[k][i][key]

            for key in configStatsDictList[0][i].keys():
                meanConfigStatsDictList[i][key] = meanConfigStatsDictList[i][key]/numConfigGraphs


        triangleDistArray = numpy.zeros((len(dayList2), 100))
        configTriangleDistArray = numpy.zeros((len(dayList2), 100))
        hopPlotArray = numpy.zeros((len(dayList2), 27))
        configHopPlotArray = numpy.zeros((len(dayList2), 30))
        componentsDistArray = numpy.zeros((len(dayList2), 3000))
        configComponentsDistArray = numpy.zeros((len(dayList2), 3000))
        numVerticesEdgesArray = numpy.zeros((len(dayList2), 2), numpy.int)
        numVerticesEdgesArray[:, 0] = [len(sgl) for sgl in subgraphIndicesList2]
        numVerticesEdgesArray[:, 1] = [sGraph.subgraph(sgl).getNumEdges() for sgl in subgraphIndicesList2]

        binWidths = numpy.arange(0, 0.50, 0.05)
        eigVectorDists = numpy.zeros((len(dayList2), binWidths.shape[0]-1), numpy.int)

        femaleSums = numpy.zeros(len(dayList2))
        maleSums = numpy.zeros(len(dayList2))
        heteroSums = numpy.zeros(len(dayList2))
        biSums = numpy.zeros(len(dayList2))

        contactSums = numpy.zeros(len(dayList2))
        nonContactSums = numpy.zeros(len(dayList2))
        donorSums = numpy.zeros(len(dayList2))
        randomTestSums = numpy.zeros(len(dayList2))
        stdSums = numpy.zeros(len(dayList2))
        prisonerSums = numpy.zeros(len(dayList2))
        recommendSums = numpy.zeros(len(dayList2))
        
        meanAges = numpy.zeros(len(dayList2))
        degrees = numpy.zeros((len(dayList2), 20))

        provinces = numpy.zeros((len(dayList2), 15))

        havanaSums = numpy.zeros(len(dayList2))
        villaClaraSums = numpy.zeros(len(dayList2))
        pinarSums = numpy.zeros(len(dayList2))
        holguinSums = numpy.zeros(len(dayList2))
        habanaSums = numpy.zeros(len(dayList2))
        sanctiSums = numpy.zeros(len(dayList2))

        meanDegrees = numpy.zeros(len(dayList2))
        stdDegrees = numpy.zeros(len(dayList2))

        #Note that death has a lot of missing values
        for j in range(len(dayList2)):
            dateStr = (str(DateUtils.getDateStrFromDay(dayList2[j], startYear)))
            logging.info(dateStr)
            statsDict = statsDictList[j]
            configStatsDict = meanConfigStatsDictList[j]

            degreeDist = statsDict["outDegreeDist"]
            degreeDist = degreeDist/float(numpy.sum(degreeDist))
            #Note that degree distribution for configuration graph will be identical 

            eigenDist = statsDict["eigenDist"]
            eigenDist = numpy.log(eigenDist[eigenDist>=10**-1])
            #configEigenDist = configStatsDict["eigenDist"]
            #configEigenDist = numpy.log(configEigenDist[configEigenDist>=10**-1])

            hopCount = statsDict["hopCount"]
            hopCount = numpy.log10(hopCount)
            hopPlotArray[j, 0:hopCount.shape[0]] = hopCount
            configHopCount = configStatsDict["hopCount"]
            configHopCount = numpy.log10(configHopCount)
            #configHopPlotArray[j, 0:configHopCount.shape[0]] = configHopCount

#.........这里部分代码省略.........
开发者ID:charanpald,项目名称:wallhack,代码行数:103,代码来源:ContactGrowthStatistics.py

示例15: plotScalarStats

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import savePickle [as 别名]
def plotScalarStats():
    logging.info("Computing scalar stats")

    resultsFileName = resultsDir + "ContactGrowthScalarStats.pkl"

    if saveResults:
        statsArray = graphStats.sequenceScalarStats(sGraph, subgraphIndicesList, slowStats)
        Util.savePickle(statsArray, resultsFileName, True)

        #Now compute statistics on the configuration graphs 
    else:
        statsArray = Util.loadPickle(resultsFileName)

        #Take the mean of the results over the configuration model graphs
        resultsFileNameBase = resultsDir + "ConfigGraphScalarStats"
        numGraphs = len(subgraphIndicesList)
        #configStatsArrays = numpy.zeros((numGraphs, graphStats.getNumStats(), numConfigGraphs))
        configStatsArrays = numpy.zeros((numGraphs, graphStats.getNumStats()-2, numConfigGraphs))

        for j in range(numConfigGraphs):
            resultsFileName = resultsFileNameBase + str(j)
            configStatsArrays[:, :, j] = Util.loadPickle(resultsFileName)

        configStatsArray = numpy.mean(configStatsArrays, 2)
        configStatsStd =  numpy.std(configStatsArrays, 2)
        global plotInd

        def plotRealConfigError(index, styleReal, styleConfig, realLabel, configLabel):
            plt.hold(True)
            plt.plot(absDayList, statsArray[:, index], styleReal, label=realLabel)
            #errors = numpy.c_[configStatsArray[:, index]-configStatsMinArray[:, index] , configStatsMaxArray[:, index]-configStatsArray[:, index]].T
            errors = numpy.c_[configStatsStd[:, index], configStatsStd[:, index]].T
            plt.plot(absDayList, configStatsArray[:, index], styleConfig, label=configLabel)
            plt.errorbar(absDayList, configStatsArray[:, index], errors, linewidth=0, elinewidth=1, label="_nolegend_", ecolor="red")

            xmin, xmax = plt.xlim()
            plt.xlim((0, xmax))
            ymin, ymax = plt.ylim()
            plt.ylim((0, ymax))


        #Output all the results into plots
        plt.figure(plotInd)
        plt.hold(True)
        plotRealConfigError(graphStats.maxComponentSizeIndex, plotStyleBW[0], plotStyles4[0], "Max comp. vertices", "CM max comp. vertices")
        plotRealConfigError(graphStats.maxComponentEdgesIndex, plotStyleBW[1], plotStyles4[1], "Max comp. edges", "CM max comp. edges")
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("No. vertices/edges")
        plt.legend(loc="upper left")
        plt.savefig(figureDir + "MaxComponentSizeGrowth.eps")
        plotInd += 1

        for k in range(len(dayList)):
            day = dayList[k]
            print(str(DateUtils.getDateStrFromDay(day, startYear)) + ": " + str(statsArray[k, graphStats.maxComponentEdgesIndex]))
            #print(str(DateUtils.getDateStrFromDay(day, startYear)) + ": " + str(configStatsArray[k, graphStats.numComponentsIndex]))

        plt.figure(plotInd)
        plotRealConfigError(graphStats.numComponentsIndex, plotStyleBW[0], plotStyles4[0], "Size >= 1", "CM size >= 1")
        plotRealConfigError(graphStats.numNonSingletonComponentsIndex, plotStyleBW[1], plotStyles4[1], "Size >= 2", "CM size >= 2")
        plotRealConfigError(graphStats.numTriOrMoreComponentsIndex, plotStyleBW[2], plotStyles4[2], "Size >= 3", "CM size >= 3")

        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("No. components")
        plt.legend(loc="upper left")
        plt.savefig(figureDir + "NumComponentsGrowth.eps")
        plotInd += 1

        plt.figure(plotInd)
        plotRealConfigError(graphStats.meanComponentSizeIndex, plotStyleBW[0], plotStyles4[0], "Real graph", "CM")
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("Mean component size")
        plt.legend(loc="lower right")
        plt.savefig(figureDir + "MeanComponentSizeGrowth.eps")
        plotInd += 1

        plt.figure(plotInd)
        plotRealConfigError(graphStats.diameterIndex, plotStyleBW[0], plotStyles4[0], "Real graph", "CM")
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("Max component diameter")
        plt.legend(loc="lower right")
        plt.savefig(figureDir + "MaxComponentDiameterGrowth.eps")
        plotInd += 1

        plt.figure(plotInd)
        plotRealConfigError(graphStats.effectiveDiameterIndex, plotStyleBW[0], plotStyles4[0], "Real graph", "CM")
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("Effective diameter")
        plt.legend(loc="lower right")
        plt.savefig(figureDir + "MaxComponentEffDiameterGrowth.eps")
        plotInd += 1

        plt.figure(plotInd)
        plotRealConfigError(graphStats.meanDegreeIndex, plotStyleBW[0], plotStyles4[0], "All vertices", "CM all vertices")
        plotRealConfigError(graphStats.maxCompMeanDegreeIndex, plotStyleBW[1], plotStyles4[1], "Max component", "CM max component")
#.........这里部分代码省略.........
开发者ID:charanpald,项目名称:wallhack,代码行数:103,代码来源:ContactGrowthStatistics.py


注:本文中的sandbox.util.Util.Util.savePickle方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。