本文整理汇总了Python中sandbox.util.Util.Util.loadPickle方法的典型用法代码示例。如果您正苦于以下问题:Python Util.loadPickle方法的具体用法?Python Util.loadPickle怎么用?Python Util.loadPickle使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sandbox.util.Util.Util
的用法示例。
在下文中一共展示了Util.loadPickle方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plotOtherStats
# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import loadPickle [as 别名]
def plotOtherStats():
#Let's look at geodesic distances in subgraphs and communities
logging.info("Computing other stats")
resultsFileName = resultsDir + "ContactGrowthOtherStats.pkl"
hivGraphStats = HIVGraphStatistics(fInds)
if saveResults:
statsArray = hivGraphStats.sequenceScalarStats(sGraph, subgraphIndicesList)
#statsArray["dayList"] = absDayList
Util.savePickle(statsArray, resultsFileName, True)
else:
statsArray = Util.loadPickle(resultsFileName)
#Just load the harmonic geodesic distances of the full graph
resultsFileName = resultsDir + "ContactGrowthScalarStats.pkl"
statsArray2 = Util.loadPickle(resultsFileName)
global plotInd
msmGeodesic = statsArray[:, hivGraphStats.msmGeodesicIndex]
msmGeodesic[msmGeodesic < 0] = 0
msmGeodesic[msmGeodesic == float('inf')] = 0
#Output all the results into plots
plt.figure(plotInd)
plt.plot(absDayList, msmGeodesic, 'k-', absDayList, statsArray[:, hivGraphStats.mostConnectedGeodesicIndex], 'k--')
plt.xticks(locs, labels)
#plt.ylim([0, 0.1])
plt.xlabel("Year")
plt.ylabel("Mean harmonic geodesic distance")
plt.legend(("MSM individuals", "Top 10% degree"), loc="upper right")
plt.savefig(figureDir + "MSM10Geodesic" + ".eps")
plotInd += 1
plt.figure(plotInd)
plt.plot(absDayList, statsArray2[:, graphStats.harmonicGeoDistanceIndex], 'k-', absDayList, statsArray[:, hivGraphStats.menSubgraphGeodesicIndex], 'k--')
plt.xticks(locs, labels)
plt.ylim([0, 200.0])
plt.xlabel("Year")
plt.ylabel("Mean harmonic geodesic distance")
plt.legend(("All individuals", "Men subgraph"), loc="upper right")
plt.savefig(figureDir + "MenSubgraphGeodesic" + ".eps")
plotInd += 1
示例2: findSimilarDocumentsLSI
# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import loadPickle [as 别名]
def findSimilarDocumentsLSI(self, field):
"""
We use LSI from gensim in this case
"""
self.computeLSI()
self.loadVectoriser()
lsi, index = Util.loadPickle(self.modelFilename)
newX = self.vectoriser.transform([field])
newX = [(i, newX[0, i])for i in newX.nonzero()[1]]
result = lsi[newX]
similarities = index[result]
expertsByDocSimilarity, expertsByCitations = self.expertsFromDocSimilarities(similarities, len(self.trainExpertDict[field]), field)
return expertsByDocSimilarity, expertsByCitations
示例3: coauthorsGraph
# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import loadPickle [as 别名]
def coauthorsGraph(self, field, relevantExperts):
"""
Using the relevant authors we find all coauthors.
"""
if not os.path.exists(self.getCoauthorsFilename(field)) or self.overwriteGraph:
logging.debug("Finding coauthors of relevant experts")
if self.knownAuthors:
graph, authorIndexer = self.coauthorsGraphFromAuthors2(set(relevantExperts), field)
else:
graph, authorIndexer = self.coauthorsGraphFromAuthors(set(relevantExperts))
logging.debug(graph.summary())
Util.savePickle([graph, authorIndexer], self.getCoauthorsFilename(field), debug=True)
else:
logging.debug("Files already generated: " + self.getCoauthorsFilename(field))
graph, authorIndexer = Util.loadPickle(self.getCoauthorsFilename(field))
return graph, authorIndexer
示例4: findSimilarDocumentsLDA
# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import loadPickle [as 别名]
def findSimilarDocumentsLDA(self, field):
"""
We use LDA in this case
"""
self.computeLDA()
self.loadVectoriser()
lda, index = Util.loadPickle(self.modelFilename)
newX = self.vectoriser.transform([field])
newX = [(i, newX[0, i])for i in newX.nonzero()[1]]
result = lda[newX]
#Cosine similarity
similarities = index[result]
expertsByDocSimilarity, expertsByCitations = self.expertsFromDocSimilarities(similarities, len(self.trainExpertDict[field]), field)
logging.debug("Number of relevant authors : " + str(len(expertsByDocSimilarity)))
return expertsByDocSimilarity, expertsByCitations
示例5: range
# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import loadPickle [as 别名]
#Find the max number t for which we have a complete set of particles
t = 0
for i in range(numEpsilons):
thetaArray, objArray = loadThetaArray(N, resultsDir, i)
if thetaArray.shape[0] == N:
t = i
logging.debug("Using particle number " + str(t))
times = numpy.arange(startDate, endDate+1, recordStep)
realTheta, sigmaTheta, purtTheta = HIVModelUtils.toyTheta()
thetaArray, objArray = loadThetaArray(N, resultsDir, t)
thetas.append(thetaArray)
print(thetaArray)
resultsFileName = outputDir + "IdealStats.pkl"
stats = Util.loadPickle(resultsFileName)
vertexArrayIdeal, idealInfectedIndices, idealRemovedIndices, idealContactGraphStats, idealRemovedGraphStats, idealFinalRemovedDegrees = stats
graphStats = GraphStatistics()
idealMeasures[ind, numDetectsInd, :] = vertexArrayIdeal[:, numDetectsInd]
idealMeasures[ind, maleInd, :] = vertexArrayIdeal[:, maleInd]
idealMeasures[ind, femaleInd, :] = vertexArrayIdeal[:, femaleInd]
idealMeasures[ind, heteroInd, :] = vertexArrayIdeal[:, heteroInd]
idealMeasures[ind, biInd, :] = vertexArrayIdeal[:, biInd]
idealMeasures[ind, randDetectInd, :] = vertexArrayIdeal[:, randDetectInd]
idealMeasures[ind, contactDetectInd, :] = vertexArrayIdeal[:, contactDetectInd]
idealMeasures[ind, numCompsInd, :] = idealRemovedGraphStats[:, graphStats.numComponentsIndex]
idealMeasures[ind, maxCompSizeInd, :] = idealRemovedGraphStats[:, graphStats.maxComponentSizeIndex]
idealMeasures[ind, numEdgesInd, :] = idealRemovedGraphStats[:, graphStats.numEdgesIndex]
maxDegrees = min(idealFinalRemovedDegrees.shape[0], numDegrees)
示例6: print
# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import loadPickle [as 别名]
coverages = numpy.load(dataset.coverageFilename)
print("==== Coverages ====")
print(coverages)
for s, field in enumerate(dataset.fields):
if ranLSI:
outputFilename = dataset.getOutputFieldDir(field) + "outputListsLSI.npz"
documentFilename = dataset.getOutputFieldDir(field) + "relevantDocsLSI.npy"
else:
outputFilename = dataset.getOutputFieldDir(field) + "outputListsLDA.npz"
documentFilename = dataset.getOutputFieldDir(field) + "relevantDocsLDA.npy"
try:
print(field)
print("-----------")
outputLists, trainExpertMatchesInds, testExpertMatchesInds = Util.loadPickle(outputFilename)
graph, authorIndexer = Util.loadPickle(dataset.getCoauthorsFilename(field))
trainPrecisions = numpy.zeros((len(ns), numMethods))
testPrecisions = numpy.zeros((len(ns), numMethods))
#Remove training experts from the output lists
trainOutputLists = []
testOutputLists = []
for outputList in outputLists:
newTrainOutputList = []
newTestOutputList = []
for item in outputList:
if item not in testExpertMatchesInds:
newTrainOutputList.append(item)
示例7: plotVectorStats
# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import loadPickle [as 别名]
def plotVectorStats():
#Finally, compute some vector stats at various points in the graph
logging.info("Computing vector stats")
global plotInd
resultsFileName = resultsDir + "InfectGrowthVectorStats.pkl"
if saveResults:
statsDictList = graphStats.sequenceVectorStats(sGraph, subgraphIndicesList2, True)
Util.savePickle(statsDictList, resultsFileName, True)
else:
statsDictList = Util.loadPickle(resultsFileName)
treeSizesDistArray = numpy.zeros((len(dayList2), 3000))
treeDepthsDistArray = numpy.zeros((len(dayList2), 100))
numVerticesEdgesArray = numpy.zeros((len(dayList2), 2), numpy.int)
numVerticesEdgesArray[:, 0] = [len(sgl) for sgl in subgraphIndicesList2]
numVerticesEdgesArray[:, 1] = [sGraph.subgraph(sgl).getNumEdges() for sgl in subgraphIndicesList2]
for j in range(len(dayList2)):
dateStr = (str(DateUtils.getDateStrFromDay(dayList2[j], startYear)))
logging.info(dateStr)
statsDict = statsDictList[j]
degreeDist = statsDict["outDegreeDist"]
degreeDist = degreeDist/float(numpy.sum(degreeDist))
maxEigVector = statsDict["maxEigVector"]
maxEigVector = numpy.flipud(numpy.sort(numpy.abs(maxEigVector)))
maxEigVector = numpy.log(maxEigVector[maxEigVector>0])
treeSizesDist = statsDict["treeSizesDist"]
treeSizesDist = numpy.array(treeSizesDist, numpy.float64)/numpy.sum(treeSizesDist)
treeSizesDistArray[j, 0:treeSizesDist.shape[0]] = treeSizesDist
treeDepthsDist = statsDict["treeDepthsDist"]
#treeDepthsDist = numpy.array(treeDepthsDist, numpy.float64)/numpy.sum(treeDepthsDist)
treeDepthsDist = numpy.array(treeDepthsDist, numpy.float64)
treeDepthsDistArray[j, 0:treeDepthsDist.shape[0]] = treeDepthsDist
plotInd2 = plotInd
plt.figure(plotInd2)
plt.plot(numpy.arange(degreeDist.shape[0]), degreeDist, label=dateStr)
plt.xlabel("Degree")
plt.ylabel("Probability")
plt.ylim((0, 0.8))
plt.legend()
plt.savefig(figureDir + "DegreeDist" + ".eps")
plotInd2 += 1
plt.figure(plotInd2)
plt.scatter(numpy.arange(treeSizesDist.shape[0])[treeSizesDist!=0], numpy.log(treeSizesDist[treeSizesDist!=0]), s=30, c=plotStyles2[j][0], label=dateStr)
plt.xlabel("Size")
plt.ylabel("log(probability)")
plt.xlim((0, 125))
plt.legend()
plt.savefig(figureDir + "TreeSizeDist" + ".eps")
plotInd2 += 1
plt.figure(plotInd2)
plt.scatter(numpy.arange(treeDepthsDist.shape[0])[treeDepthsDist!=0], numpy.log(treeDepthsDist[treeDepthsDist!=0]), s=30, c=plotStyles2[j][0], label=dateStr)
plt.xlabel("Depth")
plt.ylabel("log(probability)")
plt.xlim((0, 15))
plt.legend()
plt.savefig(figureDir + "TreeDepthDist" + ".eps")
plotInd2 += 1
dateStrList = [DateUtils.getDateStrFromDay(day, startYear) for day in dayList2]
precision = 4
treeSizesDistArray = treeSizesDistArray[:, 0:treeSizesDist.shape[0]]
nonZeroCols = numpy.sum(treeSizesDistArray, 0)!=0
print((Latex.array1DToRow(numpy.arange(treeSizesDistArray.shape[1])[nonZeroCols])))
print((Latex.array2DToRows(treeSizesDistArray[:, nonZeroCols])))
print("Tree depths")
treeDepthsDistArray = treeDepthsDistArray[:, 0:treeDepthsDist.shape[0]]
nonZeroCols = numpy.sum(treeDepthsDistArray, 0)!=0
print((Latex.array1DToRow(numpy.arange(treeDepthsDistArray.shape[1])[nonZeroCols])))
print((Latex.array2DToRows(treeDepthsDistArray[:, nonZeroCols])))
print(numpy.sum(treeDepthsDistArray[:, 0:3], 1))
print("Edges and verticies")
print(Latex.listToRow(dateStrList))
print(Latex.array2DToRows(numVerticesEdgesArray.T, precision))
示例8: plotScalarStats
# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import loadPickle [as 别名]
def plotScalarStats():
logging.info("Computing scalar stats")
resultsFileName = resultsDir + "InfectGrowthScalarStats.pkl"
if saveResults:
statsArray = graphStats.sequenceScalarStats(sGraph, subgraphIndicesList, treeStats=True)
Util.savePickle(statsArray, resultsFileName, True)
else:
statsArray = Util.loadPickle(resultsFileName)
global plotInd
#Output all the results into plots
#Take the mean of the results over the configuration model graphs
resultsFileNameBase = resultsDir + "ConfigInfectGraphScalarStats"
numGraphs = len(subgraphIndicesList)
configStatsArrays = numpy.zeros((numGraphs, graphStats.getNumStats(), numConfigGraphs))
for j in range(numConfigGraphs):
resultsFileName = resultsFileNameBase + str(j)
configStatsArrays[:, :, j] = Util.loadPickle(resultsFileName)
configStatsArray = numpy.mean(configStatsArrays, 2)
configStatsStd = numpy.std(configStatsArrays, 2)
#Make sure we don't include 0 in the array
vertexIndex = numpy.argmax(statsArray[:, graphStats.numVerticesIndex] > 0)
edgeIndex = numpy.argmax(statsArray[:, graphStats.numEdgesIndex] > 0)
minIndex = numpy.maximum(vertexIndex, edgeIndex)
def plotRealConfigError(index, styleReal, styleConfig, realLabel, configLabel):
plt.hold(True)
plt.plot(absDayList, statsArray[:, index], styleReal, label=realLabel)
#errors = numpy.c_[configStatsArray[:, index]-configStatsMinArray[:, index] , configStatsMaxArray[:, index]-configStatsArray[:, index]].T
errors = numpy.c_[configStatsStd[:, index], configStatsStd[:, index]].T
plt.plot(absDayList, configStatsArray[:, index], styleConfig, label=configLabel)
plt.errorbar(absDayList, configStatsArray[:, index], errors, linewidth=0, elinewidth=0, label="_nolegend_", ecolor=styleConfig[0])
xmin, xmax = plt.xlim()
plt.xlim((0, xmax))
ymin, ymax = plt.ylim()
plt.ylim((0, ymax))
plt.figure(plotInd)
plt.plot(numpy.log(statsArray[minIndex:, graphStats.numVerticesIndex]), numpy.log(statsArray[minIndex:, graphStats.numEdgesIndex]))
plt.xlabel("log(|V|)")
plt.ylabel("log(|E|)")
plt.savefig(figureDir + "LogVerticesEdgesGrowth.eps")
plotInd += 1
plt.figure(plotInd)
#plt.plot(absDayList, statsArray[:, graphStats.numTreesIndex], plotStyles3[0], label="Trees Size >= 1")
#plt.plot(absDayList, statsArray[:, graphStats.numNonSingletonTreesIndex], plotStyles3[1], label="Trees Size >= 2")
plotRealConfigError(graphStats.numTreesIndex, plotStyles3[0], plotStyles5[0], "Trees size >= 1", "CM trees size >= 1")
plotRealConfigError(graphStats.numNonSingletonTreesIndex, plotStyles3[0], plotStyles5[0], "Trees size >= 2", "CM trees size >= 2")
plt.xticks(locs, labels)
plt.xlabel("Year")
plt.ylabel("No. trees")
plt.legend(loc="upper left")
plt.savefig(figureDir + "NumTreesGrowth.eps")
plotInd += 1
for k in range(len(dayList)):
day = dayList[k]
print(str(DateUtils.getDateStrFromDay(day, startYear)) + ": " + str(statsArray[k, graphStats.numTreesIndex]))
print(str(DateUtils.getDateStrFromDay(day, startYear)) + ": " + str(configStatsArray[k, graphStats.numTreesIndex]))
#Load stats from a file to get the max tree from its root
resultsFilename = resultsDir + "treeSizesDepths.npz"
file = open(resultsFilename, 'r')
arrayDict = numpy.load(file)
statsArray[:, graphStats.maxTreeDepthIndex] = arrayDict["arr_0"]
statsArray[:, graphStats.maxTreeSizeIndex] = arrayDict["arr_1"]
statsArray[:, graphStats.secondTreeDepthIndex] = arrayDict["arr_2"]
statsArray[:, graphStats.secondTreeSizeIndex] = arrayDict["arr_3"]
plt.figure(plotInd)
plotRealConfigError(graphStats.maxTreeSizeIndex, plotStyles3[0], plotStyles5[0], "Max tree", "CM max tree")
plotRealConfigError(graphStats.secondTreeSizeIndex, plotStyles3[1], plotStyles5[1], "2nd tree", "CM 2nd tree")
plt.xticks(locs, labels)
plt.xlabel("Year")
plt.ylabel("Size")
plt.legend(loc="upper left")
plt.savefig(figureDir + "MaxTreeGrowth.eps")
plotInd += 1
plt.figure(plotInd)
plotRealConfigError(graphStats.maxTreeDepthIndex, plotStyles3[0], plotStyles5[0], "Max tree", "CM max tree")
plotRealConfigError(graphStats.secondTreeDepthIndex, plotStyles3[1], plotStyles5[1], "2nd tree", "CM 2nd tree")
#plt.plot(absDayList, statsArray[:, graphStats.maxTreeDepthIndex], plotStyles3[0], absDayList, statsArray[:, graphStats.secondTreeDepthIndex], plotStyles3[1] )
#plt.plot(absDayList, configStatsArray[:, graphStats.maxTreeDepthIndex], plotStyles4[0], absDayList, configStatsArray[:, graphStats.secondTreeDepthIndex], plotStyles4[1])
plt.xticks(locs, labels)
plt.xlabel("Year")
plt.ylabel("Depth")
plt.legend(loc="lower right")
plt.savefig(figureDir + "MaxTreeDepthGrowth.eps")
plotInd += 1
示例9: plotTreeStats
# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import loadPickle [as 别名]
def plotTreeStats():
logging.info("Computing tree stats")
resultsFileName = resultsDir + "InfectGrowthTreeStats.pkl"
if saveResults:
statsDictList = []
for j in range(len(subgraphIndicesList2)):
Util.printIteration(j, 1, len(subgraphIndicesList2))
subgraphIndices = subgraphIndicesList2[j]
subgraph = sGraph.subgraph(subgraphIndices)
logging.info("Finding trees")
trees = subgraph.findTrees()
logging.info("Computing tree statistics")
statsDict = {}
locationEntropy = []
orientEntropy = []
detectionRanges = []
for i in range(len(trees)):
if len(trees[i]) > 1:
treeGraph = subgraph.subgraph(trees[i])
vertexArray = treeGraph.getVertexList().getVertices(list(range(treeGraph.getNumVertices())))
locationEntropy.append(Util.entropy(vertexArray[:, locationIndex]))
orientEntropy.append(Util.entropy(vertexArray[:, orientationIndex]))
detections = vertexArray[:, detectionIndex]
detectionRanges.append(numpy.max(detections) - numpy.min(detections))
statsDict["locationEnt"] = numpy.array(locationEntropy)
statsDict["orientEnt"] = numpy.array(orientEntropy)
statsDict["detectRanges"] = numpy.array(detectionRanges)
statsDictList.append(statsDict)
Util.savePickle(statsDictList, resultsFileName, True)
else:
statsDictList = Util.loadPickle(resultsFileName)
locBins = numpy.arange(0, 2.4, 0.2)
detectBins = numpy.arange(0, 6500, 500)
locationEntDists = []
orientEntDists = []
detectionDists = []
for j in range(0, len(dayList2)):
dateStr = (str(DateUtils.getDateStrFromDay(dayList2[j], startYear)))
logging.info(dateStr)
statsDict = statsDictList[j]
plotInd2 = plotInd
locationEntDists.append(statsDict["locationEnt"])
orientEntDists.append(statsDict["orientEnt"])
detectionDists.append(statsDict["detectRanges"])
#for j in range(len(orientEntDists)):
# print(numpy.sum(numpy.histogram(orientEntDists[j])[0]))
# print(numpy.histogram(orientEntDists[j])[0]/float(orientEntDists[j].shape[0]))
dateStrs = [DateUtils.getDateStrFromDay(dayList2[i], startYear) for i in range(1, len(dayList2))]
plt.figure(plotInd2)
histOut = plt.hist(locationEntDists, locBins, normed=True)
plt.xlabel("Location Entropy")
plt.ylabel("Probability Density")
plt.savefig(figureDir + "LocationEnt" + ".eps")
#plt.legend()
plotInd2 += 1
plt.figure(plotInd2)
histOut = plt.hist(orientEntDists, normed=True)
plt.xlabel("Orientation Entropy")
plt.ylabel("Probability Density")
plt.savefig(figureDir + "OrientEnt" + ".eps")
#plt.legend()
plotInd2 += 1
plt.figure(plotInd2)
histOut = plt.hist(detectionDists, detectBins, normed=True)
plt.xlabel("Detection Range (days)")
plt.ylabel("Probability Density")
plt.savefig(figureDir + "DetectionRanges" + ".eps")
#plt.legend()
plotInd2 += 1
示例10: loadVectoriser
# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import loadPickle [as 别名]
def loadVectoriser(self):
self.vectoriser = Util.loadPickle(self.vectoriserFilename)
self.vectoriser.tokenizer = PorterTokeniser()
self.authorList = Util.loadPickle(self.authorListFilename)
self.citationList = Util.loadPickle(self.citationListFilename)
logging.debug("Loaded vectoriser, citation and author list")
示例11: plotVectorStats
# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import loadPickle [as 别名]
def plotVectorStats():
#Finally, compute some vector stats at various points in the graph
logging.info("Computing vector stats")
global plotInd
resultsFileName = resultsDir + "ContactGrowthVectorStats.pkl"
if saveResults:
statsDictList = graphStats.sequenceVectorStats(sGraph, subgraphIndicesList2)
Util.savePickle(statsDictList, resultsFileName, False)
else:
statsDictList = Util.loadPickle(resultsFileName)
#Load up configuration model results
configStatsDictList = []
resultsFileNameBase = resultsDir + "ConfigGraphVectorStats"
for j in range(numConfigGraphs):
resultsFileName = resultsFileNameBase + str(j)
configStatsDictList.append(Util.loadPickle(resultsFileName))
#Now need to take mean of 1st element of list
meanConfigStatsDictList = configStatsDictList[0]
for i in range(len(configStatsDictList[0])):
for k in range(1, numConfigGraphs):
for key in configStatsDictList[k][i].keys():
if configStatsDictList[k][i][key].shape[0] > meanConfigStatsDictList[i][key].shape[0]:
meanConfigStatsDictList[i][key] = numpy.r_[meanConfigStatsDictList[i][key], numpy.zeros(configStatsDictList[k][i][key].shape[0] - meanConfigStatsDictList[i][key].shape[0])]
elif configStatsDictList[k][i][key].shape[0] < meanConfigStatsDictList[i][key].shape[0]:
configStatsDictList[k][i][key] = numpy.r_[configStatsDictList[k][i][key], numpy.zeros(meanConfigStatsDictList[i][key].shape[0] - configStatsDictList[k][i][key].shape[0])]
meanConfigStatsDictList[i][key] += configStatsDictList[k][i][key]
for key in configStatsDictList[0][i].keys():
meanConfigStatsDictList[i][key] = meanConfigStatsDictList[i][key]/numConfigGraphs
triangleDistArray = numpy.zeros((len(dayList2), 100))
configTriangleDistArray = numpy.zeros((len(dayList2), 100))
hopPlotArray = numpy.zeros((len(dayList2), 27))
configHopPlotArray = numpy.zeros((len(dayList2), 30))
componentsDistArray = numpy.zeros((len(dayList2), 3000))
configComponentsDistArray = numpy.zeros((len(dayList2), 3000))
numVerticesEdgesArray = numpy.zeros((len(dayList2), 2), numpy.int)
numVerticesEdgesArray[:, 0] = [len(sgl) for sgl in subgraphIndicesList2]
numVerticesEdgesArray[:, 1] = [sGraph.subgraph(sgl).getNumEdges() for sgl in subgraphIndicesList2]
binWidths = numpy.arange(0, 0.50, 0.05)
eigVectorDists = numpy.zeros((len(dayList2), binWidths.shape[0]-1), numpy.int)
femaleSums = numpy.zeros(len(dayList2))
maleSums = numpy.zeros(len(dayList2))
heteroSums = numpy.zeros(len(dayList2))
biSums = numpy.zeros(len(dayList2))
contactSums = numpy.zeros(len(dayList2))
nonContactSums = numpy.zeros(len(dayList2))
donorSums = numpy.zeros(len(dayList2))
randomTestSums = numpy.zeros(len(dayList2))
stdSums = numpy.zeros(len(dayList2))
prisonerSums = numpy.zeros(len(dayList2))
recommendSums = numpy.zeros(len(dayList2))
meanAges = numpy.zeros(len(dayList2))
degrees = numpy.zeros((len(dayList2), 20))
provinces = numpy.zeros((len(dayList2), 15))
havanaSums = numpy.zeros(len(dayList2))
villaClaraSums = numpy.zeros(len(dayList2))
pinarSums = numpy.zeros(len(dayList2))
holguinSums = numpy.zeros(len(dayList2))
habanaSums = numpy.zeros(len(dayList2))
sanctiSums = numpy.zeros(len(dayList2))
meanDegrees = numpy.zeros(len(dayList2))
stdDegrees = numpy.zeros(len(dayList2))
#Note that death has a lot of missing values
for j in range(len(dayList2)):
dateStr = (str(DateUtils.getDateStrFromDay(dayList2[j], startYear)))
logging.info(dateStr)
statsDict = statsDictList[j]
configStatsDict = meanConfigStatsDictList[j]
degreeDist = statsDict["outDegreeDist"]
degreeDist = degreeDist/float(numpy.sum(degreeDist))
#Note that degree distribution for configuration graph will be identical
eigenDist = statsDict["eigenDist"]
eigenDist = numpy.log(eigenDist[eigenDist>=10**-1])
#configEigenDist = configStatsDict["eigenDist"]
#configEigenDist = numpy.log(configEigenDist[configEigenDist>=10**-1])
hopCount = statsDict["hopCount"]
hopCount = numpy.log10(hopCount)
hopPlotArray[j, 0:hopCount.shape[0]] = hopCount
configHopCount = configStatsDict["hopCount"]
configHopCount = numpy.log10(configHopCount)
#configHopPlotArray[j, 0:configHopCount.shape[0]] = configHopCount
#.........这里部分代码省略.........
示例12: plotScalarStats
# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import loadPickle [as 别名]
def plotScalarStats():
logging.info("Computing scalar stats")
resultsFileName = resultsDir + "ContactGrowthScalarStats.pkl"
if saveResults:
statsArray = graphStats.sequenceScalarStats(sGraph, subgraphIndicesList, slowStats)
Util.savePickle(statsArray, resultsFileName, True)
#Now compute statistics on the configuration graphs
else:
statsArray = Util.loadPickle(resultsFileName)
#Take the mean of the results over the configuration model graphs
resultsFileNameBase = resultsDir + "ConfigGraphScalarStats"
numGraphs = len(subgraphIndicesList)
#configStatsArrays = numpy.zeros((numGraphs, graphStats.getNumStats(), numConfigGraphs))
configStatsArrays = numpy.zeros((numGraphs, graphStats.getNumStats()-2, numConfigGraphs))
for j in range(numConfigGraphs):
resultsFileName = resultsFileNameBase + str(j)
configStatsArrays[:, :, j] = Util.loadPickle(resultsFileName)
configStatsArray = numpy.mean(configStatsArrays, 2)
configStatsStd = numpy.std(configStatsArrays, 2)
global plotInd
def plotRealConfigError(index, styleReal, styleConfig, realLabel, configLabel):
plt.hold(True)
plt.plot(absDayList, statsArray[:, index], styleReal, label=realLabel)
#errors = numpy.c_[configStatsArray[:, index]-configStatsMinArray[:, index] , configStatsMaxArray[:, index]-configStatsArray[:, index]].T
errors = numpy.c_[configStatsStd[:, index], configStatsStd[:, index]].T
plt.plot(absDayList, configStatsArray[:, index], styleConfig, label=configLabel)
plt.errorbar(absDayList, configStatsArray[:, index], errors, linewidth=0, elinewidth=1, label="_nolegend_", ecolor="red")
xmin, xmax = plt.xlim()
plt.xlim((0, xmax))
ymin, ymax = plt.ylim()
plt.ylim((0, ymax))
#Output all the results into plots
plt.figure(plotInd)
plt.hold(True)
plotRealConfigError(graphStats.maxComponentSizeIndex, plotStyleBW[0], plotStyles4[0], "Max comp. vertices", "CM max comp. vertices")
plotRealConfigError(graphStats.maxComponentEdgesIndex, plotStyleBW[1], plotStyles4[1], "Max comp. edges", "CM max comp. edges")
plt.xticks(locs, labels)
plt.xlabel("Year")
plt.ylabel("No. vertices/edges")
plt.legend(loc="upper left")
plt.savefig(figureDir + "MaxComponentSizeGrowth.eps")
plotInd += 1
for k in range(len(dayList)):
day = dayList[k]
print(str(DateUtils.getDateStrFromDay(day, startYear)) + ": " + str(statsArray[k, graphStats.maxComponentEdgesIndex]))
#print(str(DateUtils.getDateStrFromDay(day, startYear)) + ": " + str(configStatsArray[k, graphStats.numComponentsIndex]))
plt.figure(plotInd)
plotRealConfigError(graphStats.numComponentsIndex, plotStyleBW[0], plotStyles4[0], "Size >= 1", "CM size >= 1")
plotRealConfigError(graphStats.numNonSingletonComponentsIndex, plotStyleBW[1], plotStyles4[1], "Size >= 2", "CM size >= 2")
plotRealConfigError(graphStats.numTriOrMoreComponentsIndex, plotStyleBW[2], plotStyles4[2], "Size >= 3", "CM size >= 3")
plt.xticks(locs, labels)
plt.xlabel("Year")
plt.ylabel("No. components")
plt.legend(loc="upper left")
plt.savefig(figureDir + "NumComponentsGrowth.eps")
plotInd += 1
plt.figure(plotInd)
plotRealConfigError(graphStats.meanComponentSizeIndex, plotStyleBW[0], plotStyles4[0], "Real graph", "CM")
plt.xticks(locs, labels)
plt.xlabel("Year")
plt.ylabel("Mean component size")
plt.legend(loc="lower right")
plt.savefig(figureDir + "MeanComponentSizeGrowth.eps")
plotInd += 1
plt.figure(plotInd)
plotRealConfigError(graphStats.diameterIndex, plotStyleBW[0], plotStyles4[0], "Real graph", "CM")
plt.xticks(locs, labels)
plt.xlabel("Year")
plt.ylabel("Max component diameter")
plt.legend(loc="lower right")
plt.savefig(figureDir + "MaxComponentDiameterGrowth.eps")
plotInd += 1
plt.figure(plotInd)
plotRealConfigError(graphStats.effectiveDiameterIndex, plotStyleBW[0], plotStyles4[0], "Real graph", "CM")
plt.xticks(locs, labels)
plt.xlabel("Year")
plt.ylabel("Effective diameter")
plt.legend(loc="lower right")
plt.savefig(figureDir + "MaxComponentEffDiameterGrowth.eps")
plotInd += 1
plt.figure(plotInd)
plotRealConfigError(graphStats.meanDegreeIndex, plotStyleBW[0], plotStyles4[0], "All vertices", "CM all vertices")
plotRealConfigError(graphStats.maxCompMeanDegreeIndex, plotStyleBW[1], plotStyles4[1], "Max component", "CM max component")
#.........这里部分代码省略.........