当前位置: 首页>>代码示例>>Python>>正文


Python Util.printConciseIteration方法代码示例

本文整理汇总了Python中sandbox.util.Util.Util.printConciseIteration方法的典型用法代码示例。如果您正苦于以下问题:Python Util.printConciseIteration方法的具体用法?Python Util.printConciseIteration怎么用?Python Util.printConciseIteration使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sandbox.util.Util.Util的用法示例。


在下文中一共展示了Util.printConciseIteration方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: evaluateLearn

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import printConciseIteration [as 别名]
    def evaluateLearn(X, y, idx, learnModel, predict, metricMethod, progress=True):
        """
        Evaluate this learning algorithm using the given list of training/test splits 
        The metricMethod is a method which takes (predictedY, realY) as input
        and returns a metric about the quality of the evaluation.

        :param X: A matrix with examples as rows 
        :type X: :class:`ndarray`

        :param y: A vector of labels 
        :type y: :class:`ndarray`

        :param idx: A list of training/test splits 
        :type idx: :class:`list`

        :param learnModel: A function such that learnModel(X, y) finds a mapping from X to y 
        :type learnModel: :class:`function`

        :param predict: A function such that predict(X) makes predictions for X
        :type predict: :class:`function`

        :param metricMethod: A function such that metricMethod(predY, testY) returns the quality of predicted labels predY
        :type metricMethod: :class:`function`

        Output: the mean and variation of the cross validation folds. 
        """
        #Parameter.checkClass(idx, list)
        Parameter.checkClass(X, numpy.ndarray)
        Parameter.checkArray(X, softCheck=True)
        Parameter.checkInt(X.shape[0], 1, float('inf'))
        Parameter.checkClass(y, numpy.ndarray)
        Parameter.checkArray(y, softCheck=True)

        if y.ndim != 1:
            raise ValueError("Dimention of y must be 1")
        
        i = 0
        metrics = numpy.zeros(len(idx))
        logging.debug("EvaluateLearn: Using " + str(len(idx)) + " splits on " + str(X.shape[0]) + " examples")

        for idxtr, idxts in idx:
            if progress:
                Util.printConciseIteration(i, 1, len(idx))

            trainX, testX = X[idxtr, :], X[idxts, :]
            trainY, testY = y[idxtr], y[idxts]
            #logging.debug("Distribution of labels in evaluateLearn train: " + str(numpy.bincount(trainY)))
            #logging.debug("Distribution of labels in evaluateLearn test: " + str(numpy.bincount(testY)))

            learnModel(trainX, trainY)
            predY = predict(testX)
            gc.collect()

            metrics[i] = metricMethod(predY, testY)
            i += 1

        return metrics
开发者ID:charanpald,项目名称:sandbox,代码行数:59,代码来源:AbstractPredictor.py

示例2: learnModel

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import printConciseIteration [as 别名]
    def learnModel(self, X, y):
        """
        Learn a model for a set of examples given as the rows of the matrix X,
        with corresponding labels given in the elements of 1D array y.

        :param X: A matrix with examples as rows
        :type X: :class:`ndarray`

        :param y: A vector of labels
        :type y: :class:`ndarray`
        """
        Parameter.checkClass(X, numpy.ndarray)
        Parameter.checkClass(y, numpy.ndarray)
        Parameter.checkArray(X)
        Parameter.checkArray(y)
        
        labels = numpy.unique(y)
        if labels.shape[0] != 2:
            raise ValueError("Can only accept binary labelled data")
        if (labels != numpy.array([-1, 1])).any(): 
            raise ValueError("Labels must be -1/+1: " + str(labels))

        forestList = []
        indList = []
        numSampledExamples = int(numpy.round(self.sampleSize*X.shape[0]))

        for i in range(self.numTrees):
            Util.printConciseIteration(i, 1, self.numTrees, "Tree: ")
            if self.sampleReplace:
                inds = numpy.random.randint(0, X.shape[0], numSampledExamples)
            else:
                inds = numpy.random.permutation(X.shape[0])[0:numSampledExamples]

            treeRank = TreeRank(self.leafRanklearner)
            treeRank.setMaxDepth(self.maxDepth)
            treeRank.setMinSplit(self.minSplit)
            treeRank.setFeatureSize(self.featureSize)
            treeRank.setBestResponse(self.bestResponse)
            treeRank.learnModel(X[inds, :], y[inds])
            forestList.append(treeRank)
            indList.append(inds)

        self.forestList = forestList
        self.indList = indList
开发者ID:charanpald,项目名称:sandbox,代码行数:46,代码来源:TreeRankForest.py


注:本文中的sandbox.util.Util.Util.printConciseIteration方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。