本文整理汇总了Python中sandbox.util.Util.Util.printConciseIteration方法的典型用法代码示例。如果您正苦于以下问题:Python Util.printConciseIteration方法的具体用法?Python Util.printConciseIteration怎么用?Python Util.printConciseIteration使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sandbox.util.Util.Util
的用法示例。
在下文中一共展示了Util.printConciseIteration方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: evaluateLearn
# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import printConciseIteration [as 别名]
def evaluateLearn(X, y, idx, learnModel, predict, metricMethod, progress=True):
"""
Evaluate this learning algorithm using the given list of training/test splits
The metricMethod is a method which takes (predictedY, realY) as input
and returns a metric about the quality of the evaluation.
:param X: A matrix with examples as rows
:type X: :class:`ndarray`
:param y: A vector of labels
:type y: :class:`ndarray`
:param idx: A list of training/test splits
:type idx: :class:`list`
:param learnModel: A function such that learnModel(X, y) finds a mapping from X to y
:type learnModel: :class:`function`
:param predict: A function such that predict(X) makes predictions for X
:type predict: :class:`function`
:param metricMethod: A function such that metricMethod(predY, testY) returns the quality of predicted labels predY
:type metricMethod: :class:`function`
Output: the mean and variation of the cross validation folds.
"""
#Parameter.checkClass(idx, list)
Parameter.checkClass(X, numpy.ndarray)
Parameter.checkArray(X, softCheck=True)
Parameter.checkInt(X.shape[0], 1, float('inf'))
Parameter.checkClass(y, numpy.ndarray)
Parameter.checkArray(y, softCheck=True)
if y.ndim != 1:
raise ValueError("Dimention of y must be 1")
i = 0
metrics = numpy.zeros(len(idx))
logging.debug("EvaluateLearn: Using " + str(len(idx)) + " splits on " + str(X.shape[0]) + " examples")
for idxtr, idxts in idx:
if progress:
Util.printConciseIteration(i, 1, len(idx))
trainX, testX = X[idxtr, :], X[idxts, :]
trainY, testY = y[idxtr], y[idxts]
#logging.debug("Distribution of labels in evaluateLearn train: " + str(numpy.bincount(trainY)))
#logging.debug("Distribution of labels in evaluateLearn test: " + str(numpy.bincount(testY)))
learnModel(trainX, trainY)
predY = predict(testX)
gc.collect()
metrics[i] = metricMethod(predY, testY)
i += 1
return metrics
示例2: learnModel
# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import printConciseIteration [as 别名]
def learnModel(self, X, y):
"""
Learn a model for a set of examples given as the rows of the matrix X,
with corresponding labels given in the elements of 1D array y.
:param X: A matrix with examples as rows
:type X: :class:`ndarray`
:param y: A vector of labels
:type y: :class:`ndarray`
"""
Parameter.checkClass(X, numpy.ndarray)
Parameter.checkClass(y, numpy.ndarray)
Parameter.checkArray(X)
Parameter.checkArray(y)
labels = numpy.unique(y)
if labels.shape[0] != 2:
raise ValueError("Can only accept binary labelled data")
if (labels != numpy.array([-1, 1])).any():
raise ValueError("Labels must be -1/+1: " + str(labels))
forestList = []
indList = []
numSampledExamples = int(numpy.round(self.sampleSize*X.shape[0]))
for i in range(self.numTrees):
Util.printConciseIteration(i, 1, self.numTrees, "Tree: ")
if self.sampleReplace:
inds = numpy.random.randint(0, X.shape[0], numSampledExamples)
else:
inds = numpy.random.permutation(X.shape[0])[0:numSampledExamples]
treeRank = TreeRank(self.leafRanklearner)
treeRank.setMaxDepth(self.maxDepth)
treeRank.setMinSplit(self.minSplit)
treeRank.setFeatureSize(self.featureSize)
treeRank.setBestResponse(self.bestResponse)
treeRank.learnModel(X[inds, :], y[inds])
forestList.append(treeRank)
indList.append(inds)
self.forestList = forestList
self.indList = indList