当前位置: 首页>>代码示例>>Python>>正文


Python Util.argmaxN方法代码示例

本文整理汇总了Python中sandbox.util.Util.Util.argmaxN方法的典型用法代码示例。如果您正苦于以下问题:Python Util.argmaxN方法的具体用法?Python Util.argmaxN怎么用?Python Util.argmaxN使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sandbox.util.Util.Util的用法示例。


在下文中一共展示了Util.argmaxN方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: recommendAtk

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import argmaxN [as 别名]
    def recommendAtk(U, V, k, blockSize=1000, omegaList=None, verbose=False): 
        """
        Compute the matrix Z = U V^T and then find the k largest indices for each row. 
        """
        blocksize = 1000
        numBlocks = int(ceil(U.shape[0]/float(blocksize)))
        orderedItems = numpy.zeros((U.shape[0], k), numpy.int32)
        scores = numpy.zeros((U.shape[0], k), numpy.float) 

        for j in range(numBlocks):
            logging.debug("Block " + str(j) + " of " + str(numBlocks))
            endInd = min(U.shape[0], (j+1)*blocksize)
            UV = U[j*blocksize:endInd, :].dot(V.T)
            orderedItems[j*blocksize:endInd, :] = Util.argmaxN(UV, k)
            
            rowInds = numpy.repeat(numpy.arange(endInd-j*blocksize), k)
            colInds = orderedItems[j*blocksize:endInd, :].flatten()           
            
            scores[j*blocksize:endInd, :] = numpy.reshape(UV[rowInds, colInds], (endInd-j*blocksize,k))
            #orderedItems[j*blocksize:endInd, :] = Util.argmaxN2d(scores, k)
            
            #Now delete items in omegaList if given 
            if omegaList != None: 
                for i in range(j*blocksize, endInd):
                    
                    nonTrainItems = orderedItems[i, :][numpy.logical_not(numpy.in1d(orderedItems[i, :], omegaList[i]))]
                    orderedItems[i, 0:nonTrainItems.shape[0]] = nonTrainItems
                    orderedItems[i, nonTrainItems.shape[0]:] = -1
        
        if verbose: 
            return orderedItems, scores 
        else: 
            return orderedItems
开发者ID:charanpald,项目名称:sandbox,代码行数:35,代码来源:MCEvaluator.py

示例2: testArgMaxN

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import argmaxN [as 别名]
    def testArgMaxN(self): 
        numRuns = 10 

        for j in range(numRuns): 
            m = numpy.random.randint(5, 50)
            a = numpy.random.rand(m)
            
            inds = numpy.flipud(numpy.argsort(a))
            
            for i in range(m): 
                nptst.assert_array_equal(Util.argmaxN(a, i), inds[0:i])
                
        #Now test a 2D array 
        for j in range(numRuns): 
            m = numpy.random.randint(5, 50)
            n = numpy.random.randint(5, 50)
            A = numpy.random.rand(m, n)
            
            inds = numpy.argsort(-A, axis=1)
            
            
            for i in range(n): 
                nptst.assert_array_equal(Util.argmaxN(A, i), inds[:, 0:i])
开发者ID:charanpald,项目名称:sandbox,代码行数:25,代码来源:UtilTest.py

示例3: testRecommendAtk

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import argmaxN [as 别名]
    def testRecommendAtk(self):
        m = 20
        n = 50
        r = 3

        X, U, s, V, wv = SparseUtils.generateSparseBinaryMatrix((m, n), r, 0.5, verbose=True)

        import sppy

        X = sppy.csarray(X)

        k = 10
        orderedItems, scores = MCEvaluator.recommendAtk(U, V, k, verbose=True)

        # Now do it manually
        Z = U.dot(V.T)

        orderedItems2 = Util.argmaxN(Z, k)
        scores2 = numpy.fliplr(numpy.sort(Z, 1))[:, 0:k]

        nptst.assert_array_equal(orderedItems, orderedItems2)
        nptst.assert_array_equal(scores, scores2)

        # Test case where we have a set of training indices to remove
        # Let's create a random omegaList
        omegaList = []
        for i in range(m):
            omegaList.append(numpy.random.permutation(n)[0:5])

        orderedItems = MCEvaluator.recommendAtk(U, V, k, omegaList=omegaList)
        orderedItems2 = MCEvaluator.recommendAtk(U, V, k)

        # print(omegaList)
        # print(orderedItems)
        # print(orderedItems2)

        for i in range(m):
            items = numpy.intersect1d(omegaList[i], orderedItems[i, :])
            self.assertEquals(items.shape[0], 0)

            items = numpy.union1d(omegaList[i], orderedItems[i, :])
            items = numpy.intersect1d(items, orderedItems2[i, :])
            nptst.assert_array_equal(items, numpy.sort(orderedItems2[i, :]))
开发者ID:kentwang,项目名称:sandbox,代码行数:45,代码来源:MCEvaluatorTest.py


注:本文中的sandbox.util.Util.Util.argmaxN方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。