当前位置: 首页>>代码示例>>Python>>正文


Python Util.mode方法代码示例

本文整理汇总了Python中sandbox.util.Util.Util.mode方法的典型用法代码示例。如果您正苦于以下问题:Python Util.mode方法的具体用法?Python Util.mode怎么用?Python Util.mode使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sandbox.util.Util.Util的用法示例。


在下文中一共展示了Util.mode方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testMode

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import mode [as 别名]
    def testMode(self):
        x = numpy.array([1,1,1,2,2,3,3,3,3,3,5,5])
        self.assertEquals(Util.mode(x), 3)

        x = numpy.array([1,1,1,2,2,3,3,3,5,5])
        self.assertEquals(Util.mode(x), 1)

        x = numpy.array([1,2,3,4])
        self.assertEquals(Util.mode(x), 1)

        x = numpy.array([0])
        self.assertEquals(Util.mode(x), 0)
开发者ID:charanpald,项目名称:sandbox,代码行数:14,代码来源:UtilTest.py

示例2: growTree

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import mode [as 别名]
 def growTree(self, X, y, argsortX, startId): 
     """
     Grow a tree using a stack. Give a sample of data and a node index, we 
     find the best split and add children to the tree accordingly. We perform 
     pre-pruning based on the penalty. 
     """
     eps = 10**-4 
     idStack = [startId]
     
     while len(idStack) != 0: 
         nodeId = idStack.pop()
         node = self.tree.getVertex(nodeId)
         accuracies, thresholds = findBestSplitRisk(self.minSplit, X, y, node.getTrainInds(), argsortX)
     
         #Choose best feature based on gains 
         accuracies += eps 
         bestFeatureInd = Util.randomChoice(accuracies)[0]
         bestThreshold = thresholds[bestFeatureInd]
     
         nodeInds = node.getTrainInds()    
         bestLeftInds = numpy.sort(nodeInds[numpy.arange(nodeInds.shape[0])[X[:, bestFeatureInd][nodeInds]<bestThreshold]]) 
         bestRightInds = numpy.sort(nodeInds[numpy.arange(nodeInds.shape[0])[X[:, bestFeatureInd][nodeInds]>=bestThreshold]])
         
         #The split may have 0 items in one set, so don't split 
         if bestLeftInds.sum() != 0 and bestRightInds.sum() != 0 and self.tree.depth() < self.maxDepth: 
             node.setError(1-accuracies[bestFeatureInd])
             node.setFeatureInd(bestFeatureInd)
             node.setThreshold(bestThreshold)            
                         
             leftChildId = self.getLeftChildId(nodeId)
             leftChild = DecisionNode(bestLeftInds, Util.mode(y[bestLeftInds]))
             self.tree.addChild(nodeId, leftChildId, leftChild)
             
             if leftChild.getTrainInds().shape[0] >= self.minSplit: 
                 idStack.append(leftChildId)
             
             rightChildId = self.getRightChildId(nodeId)
             rightChild = DecisionNode(bestRightInds, Util.mode(y[bestRightInds]))
             self.tree.addChild(nodeId, rightChildId, rightChild)
             
             if rightChild.getTrainInds().shape[0] >= self.minSplit: 
                 idStack.append(rightChildId)
开发者ID:charanpald,项目名称:sandbox,代码行数:44,代码来源:PenaltyDecisionTree.py

示例3: learnModel

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import mode [as 别名]
 def learnModel(self, X, y):
     if numpy.unique(y).shape[0] != 2: 
         raise ValueError("Must provide binary labels")
     if y.dtype != numpy.int: 
         raise ValueError("Labels must be integers")
     
     self.shapeX = X.shape  
     argsortX = numpy.zeros(X.shape, numpy.int)
     for i in range(X.shape[1]): 
         argsortX[:, i] = numpy.argsort(X[:, i])
         argsortX[:, i] = numpy.argsort(argsortX[:, i])
     
         
     rootId = (0,)
     idStack = [rootId]
     self.tree = DictTree()
     rootNode = DecisionNode(numpy.arange(X.shape[0]), Util.mode(y))
     self.tree.setVertex(rootId, rootNode)
     bestError = float("inf")
     bestTree = self.tree 
     
     #First grow a selection of trees
     
     while len(idStack) != 0:
         #Prune the current node away and grow from that node 
         nodeId = idStack.pop()
         
         for i in range(self.sampleSize):
             self.tree = bestTree.deepCopy()
             try: 
                 node = self.tree.getVertex(nodeId)
             except ValueError:
                 print(nodeId)
                 print(self.tree)
                 raise 
                     
             self.tree.pruneVertex(nodeId)
             self.growTree(X, y, argsortX, nodeId)
             self.prune(X, y)
             error = self.treeObjective(X, y)
         
             if error < bestError: 
                 bestError = error
                 bestTree = self.tree.deepCopy()
         
         children = bestTree.children(nodeId)
         idStack.extend(children)
         
     self.tree = bestTree 
开发者ID:charanpald,项目名称:sandbox,代码行数:51,代码来源:PenaltyDecisionTree.py

示例4: testPrune

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import mode [as 别名]
 def testPrune(self): 
     startId = (0, )
     minSplit = 20
     maxDepth = 5
     gamma = 0.05
     learner = PenaltyDecisionTree(minSplit=minSplit, maxDepth=maxDepth, gamma=gamma, pruning=False) 
     
     trainX = self.X[100:, :]
     trainY = self.y[100:]
     testX = self.X[0:100, :]
     testY = self.y[0:100]    
     
     argsortX = numpy.zeros(trainX.shape, numpy.int)
     for i in range(trainX.shape[1]): 
         argsortX[:, i] = numpy.argsort(trainX[:, i])
         argsortX[:, i] = numpy.argsort(argsortX[:, i])
     
     learner.tree = DictTree()
     rootNode = DecisionNode(numpy.arange(trainX.shape[0]), Util.mode(trainY))
     learner.tree.setVertex(startId, rootNode)        
     learner.growTree(trainX, trainY, argsortX, startId)    
     learner.shapeX = trainX.shape 
     learner.predict(trainX, trainY)
     learner.computeAlphas()
     
     obj1 = learner.treeObjective(trainX, trainY)        
     size1 = learner.tree.getNumVertices()
     
     #Now we'll prune 
     learner.prune(trainX, trainY)
     
     obj2 = learner.treeObjective(trainX, trainY)
     size2 = learner.tree.getNumVertices()
     
     self.assertTrue(obj1 >= obj2)    
     self.assertTrue(size1 >= size2)        
     
     #Check there are no nodes with alpha>alphaThreshold 
     for vertexId in learner.tree.getAllVertexIds(): 
         self.assertTrue(learner.tree.getVertex(vertexId).alpha <= learner.alphaThreshold)
开发者ID:charanpald,项目名称:sandbox,代码行数:42,代码来源:PenaltyDecisionTreeTest.py

示例5: testGrowTree

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import mode [as 别名]
 def testGrowTree(self):
     startId = (0, )
     minSplit = 20
     maxDepth = 3
     gamma = 0.01
     learner = PenaltyDecisionTree(minSplit=minSplit, maxDepth=maxDepth, gamma=gamma, pruning=False) 
     
     trainX = self.X[100:, :]
     trainY = self.y[100:]
     testX = self.X[0:100, :]
     testY = self.y[0:100]    
     
     argsortX = numpy.zeros(trainX.shape, numpy.int)
     for i in range(trainX.shape[1]): 
         argsortX[:, i] = numpy.argsort(trainX[:, i])
         argsortX[:, i] = numpy.argsort(argsortX[:, i])
     
     learner.tree = DictTree()
     rootNode = DecisionNode(numpy.arange(trainX.shape[0]), Util.mode(trainY))
     learner.tree.setVertex(startId, rootNode)        
     
     #Note that this matches with the case where we create a new tree each time 
     numpy.random.seed(21)
     bestError = float("inf")        
     
     for i in range(20): 
         learner.tree.pruneVertex(startId)
         learner.growTree(trainX, trainY, argsortX, startId)
         
         predTestY = learner.predict(testX)
         error = Evaluator.binaryError(predTestY, testY)
         #print(Evaluator.binaryError(predTestY, testY), learner.tree.getNumVertices())
         
         if error < bestError: 
             bestError = error 
             bestTree = learner.tree.copy() 
         
         self.assertTrue(learner.tree.depth() <= maxDepth)
         
         for vertexId in learner.tree.nonLeaves(): 
             self.assertTrue(learner.tree.getVertex(vertexId).getTrainInds().shape[0] >= minSplit)
     
     bestError1 = bestError               
     learner.tree = bestTree    
     
     #Now we test growing a tree from a non-root vertex 
     numpy.random.seed(21)
     for i in range(20): 
         learner.tree.pruneVertex((0, 1)) 
         learner.growTree(trainX, trainY, argsortX, (0, 1))
         
         self.assertTrue(learner.tree.getVertex((0,)) == bestTree.getVertex((0,)))
         self.assertTrue(learner.tree.getVertex((0,0)) == bestTree.getVertex((0,0)))
         
         
         predTestY = learner.predict(testX)
         error = Evaluator.binaryError(predTestY, testY)
         
         if error < bestError: 
             bestError = error 
             bestTree = learner.tree.copy() 
         #print(Evaluator.binaryError(predTestY, testY), learner.tree.getNumVertices())
     self.assertTrue(bestError1 >= bestError )
开发者ID:charanpald,项目名称:sandbox,代码行数:65,代码来源:PenaltyDecisionTreeTest.py

示例6: testComputeAlphas

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import mode [as 别名]
 def testComputeAlphas(self): 
     minSplit = 20
     maxDepth = 3
     gamma = 0.1
         
     X, y = self.X, self.y
             
     testX = X[100:, :]
     testY = y[100:]
     X = X[0:100, :]
     y = y[0:100]
      
     learner = PenaltyDecisionTree(minSplit=minSplit, maxDepth=maxDepth, gamma=gamma, pruning=False) 
     learner.learnModel(X, y)                  
     tree = learner.getTree()    
     
     rootId = (0,)
     learner.tree.getVertex(rootId).setTestInds(numpy.arange(X.shape[0]))
     learner.predict(X, y)  
     learner.computeAlphas()
     
     #See if the alpha values of the nodes are correct 
     for vertexId in tree.getAllVertexIds(): 
         subtreeLeaves = tree.leaves(vertexId)
         
         subtreeError = 0 
         for subtreeLeaf in subtreeLeaves: 
             subtreeError += (1-gamma)*tree.getVertex(subtreeLeaf).getTestError()
         
         n = float(X.shape[0])
         d = X.shape[1]
         T = tree.getNumVertices() 
         subtreeError /= n 
         subtreeError += gamma * numpy.sqrt(T)
         
         T2 = T - len(tree.subtreeIds(vertexId)) + 1 
         vertexError = (1-gamma)*tree.getVertex(vertexId).getTestError()/n
         vertexError +=  gamma * numpy.sqrt(T2)
         
         self.assertAlmostEquals((subtreeError - vertexError), tree.getVertex(vertexId).alpha)
         
         if tree.isLeaf(vertexId): 
             self.assertEquals(tree.getVertex(vertexId).alpha, 0.0)
             
     #Let's check the alpha of the root node via another method 
     rootId = (0,)
     
     T = 1 
     (n, d) = X.shape
     n = float(n)
     vertexError = (1-gamma)*numpy.sum(y != Util.mode(y))/n
     pen = gamma*numpy.sqrt(T)
     vertexError += pen 
     
     T = tree.getNumVertices() 
     treeError = (1-gamma)*numpy.sum(y != learner.predict(X))/n         
     pen = gamma*numpy.sqrt(T)
     treeError += pen 
     
     alpha = treeError - vertexError 
     self.assertAlmostEqual(alpha, tree.getVertex(rootId).alpha)
开发者ID:charanpald,项目名称:sandbox,代码行数:63,代码来源:PenaltyDecisionTreeTest.py

示例7: learnModel

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import mode [as 别名]
 def learnModel(self, X, y):
     """
     Basically figure out the majority label
     """
     self.majorLabel = Util.mode(y)
开发者ID:charanpald,项目名称:sandbox,代码行数:7,代码来源:MajorityPredictor.py


注:本文中的sandbox.util.Util.Util.mode方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。