当前位置: 首页>>代码示例>>Python>>正文


Python Util.computeMeanVar方法代码示例

本文整理汇总了Python中sandbox.util.Util.Util.computeMeanVar方法的典型用法代码示例。如果您正苦于以下问题:Python Util.computeMeanVar方法的具体用法?Python Util.computeMeanVar怎么用?Python Util.computeMeanVar使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sandbox.util.Util.Util的用法示例。


在下文中一共展示了Util.computeMeanVar方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testGenerateIndicatorVertices

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import computeMeanVar [as 别名]
    def testGenerateIndicatorVertices(self):
        egoGenerator = EgoGenerator() 
        
        numVertices = 500000
        means = numpy.array([1, 10])
        vars = numpy.array([[5, 1], [1, 2]])
        p = 0.1
        
        vList = egoGenerator.generateIndicatorVertices(numVertices, means, vars, p)
        X = numpy.zeros((numVertices, means.shape[0]+1))
        
        for i in range(0, numVertices): 
            X[i, :] = vList.getVertex(i)
        
        (means2, vars2) = Util.computeMeanVar(X)

        self.assertTrue((X.astype(numpy.int32) == X).all())

        self.assertAlmostEquals(numpy.linalg.norm(means2[0:2] - means), 0, places=1)
        self.assertAlmostEquals(numpy.linalg.norm(vars2[0:2][:,0:2] - vars), 0, places=0)
        self.assertAlmostEquals(p, means2[2],places=2)

        #Try non-symmetric variance matrix
        vars = numpy.array([[5, 1], [8, 2]])
        self.assertRaises(ValueError, egoGenerator.generateIndicatorVertices, numVertices, means, vars, p)
开发者ID:charanpald,项目名称:wallhack,代码行数:27,代码来源:EgoGeneratorTest.py

示例2: checkDistributions

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import computeMeanVar [as 别名]
def checkDistributions():
    matFileName = "../../data/EgoAlterTransmissions.mat"
    examplesList = ExamplesList.readFromMatFile(matFileName)

    numFeatures = examplesList.getDataFieldSize("X", 1)
    X = examplesList.getDataField("X")[:, 0:numFeatures/2]
    Z = examplesList.getDataField("X")[:, numFeatures/2:numFeatures]
    y = examplesList.getDataField("y")
    A = Z[y==-1, :]

    #Now load directly from the CSV file
    #Learn the distribution of the egos
    eCsvReader = EgoCsvReader()
    egoFileName = "../../data/EgoData.csv"
    alterFileName = "../../data/AlterData.csv"
    egoQuestionIds = eCsvReader.getEgoQuestionIds()
    alterQuestionIds = eCsvReader.getAlterQuestionIds()
    (X2, titles) = eCsvReader.readFile(egoFileName, egoQuestionIds)
    X2[:, eCsvReader.ageIndex] = eCsvReader.ageToCategories(X2[:, eCsvReader.ageIndex])

    (mu, sigma) = Util.computeMeanVar(X)
    (mu2, sigma2) = Util.computeMeanVar(X2)
    (mu3, sigma3) = Util.computeMeanVar(Z)
    (mu4, sigma4) = Util.computeMeanVar(A)

    #Seems okay. Next check alters
    print(("Mean " + str(mu - mu4)))
    print(("Variance " + str(numpy.diag(sigma - sigma4))))

    """
    Analysis between the Egos in EgoData.csv and those in EgoAlterTransmissions.mat
    reveals that the distributions match closely. The main differences are
    in the means and variances in Q44A - D, but this isn't too suprising.
    """

    """
开发者ID:charanpald,项目名称:wallhack,代码行数:38,代码来源:CheckData.py

示例3: testGenerateIndicatorVertices2

# 需要导入模块: from sandbox.util.Util import Util [as 别名]
# 或者: from sandbox.util.Util.Util import computeMeanVar [as 别名]
    def testGenerateIndicatorVertices2(self):
        egoGenerator = EgoGenerator()

        numVertices = 500000
        means = numpy.array([1, 10])
        vars = numpy.array([[5, 1], [1, 2]])
        mins = numpy.array([-1000, -1000])
        maxs = numpy.array([1000, 1000])

        p = 0.1

        vList = egoGenerator.generateIndicatorVertices2(numVertices, means, vars, p, mins, maxs)
        X = numpy.zeros((numVertices, means.shape[0]+1))

        for i in range(0, numVertices):
            X[i, :] = vList.getVertex(i)

        (means2, vars2) = Util.computeMeanVar(X)

        self.assertTrue((X.astype(numpy.int32) == X).all())

        self.assertAlmostEquals(numpy.linalg.norm(means2[0:2] - means), 0, places=1)
        self.assertAlmostEquals(numpy.linalg.norm(vars2[0:2][:,0:2] - vars), 0, places=0)
        self.assertAlmostEquals(p, means2[2],places=2)

        self.assertTrue((X[:, 0:2].min(0) >= mins).all())
        self.assertTrue((X[:, 0:2].max(0) <= maxs).all())

        #Try non-symmetric variance matrix
        vars = numpy.array([[5, 1], [8, 2]])
        self.assertRaises(ValueError, egoGenerator.generateIndicatorVertices2, numVertices, means, vars, p, mins, maxs)

        #Test min > max
        vars = numpy.array([[5, 1], [1, 2]])
        mins = numpy.array([-2, 6])
        maxs = numpy.array([10, 5])
        self.assertRaises(ValueError, egoGenerator.generateIndicatorVertices2, numVertices, means, vars, p, mins, maxs)

        #Test min == max
        numVertices = 1000
        vars = numpy.array([[5, 1], [1, 2]])
        mins = numpy.array([-2, 5])
        maxs = numpy.array([10, 5])
        vList = egoGenerator.generateIndicatorVertices2(numVertices, means, vars, p, mins, maxs)

        for i in range(0, numVertices):
            self.assertTrue(vList.getVertex(i)[1] == 5)

        #Try a new example with small range of min and max - check the mean and var
        numVertices = 500000
        means = numpy.array([1, 10])
        vars = numpy.array([[2, 0], [0, 2]])
        mins = numpy.array([-3, 6])
        maxs = numpy.array([5, 14])

        p = 0.1

        vList = egoGenerator.generateIndicatorVertices2(numVertices, means, vars, p, mins, maxs)
        X = numpy.zeros((numVertices, means.shape[0]+1))

        for i in range(0, numVertices):
            X[i, :] = vList.getVertex(i)

        (means2, vars2) = Util.computeMeanVar(X)

        self.assertAlmostEquals(numpy.linalg.norm(means2[0:2] - means), 0, places=1)
        self.assertAlmostEquals(numpy.linalg.norm(vars2[0:2][:,0:2] - vars), 0, places=0)
        self.assertAlmostEquals(p, means2[2],places=2)

        logging.debug((X[:, 0:2].min(0)))
        logging.debug((X[:, 0:2].max(0)))

        self.assertTrue((X[:, 0:2].min(0) >= mins).all())
        self.assertTrue((X[:, 0:2].max(0) <= maxs).all())
开发者ID:charanpald,项目名称:wallhack,代码行数:76,代码来源:EgoGeneratorTest.py


注:本文中的sandbox.util.Util.Util.computeMeanVar方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。