本文整理汇总了Python中nervanagpu.NervanaGPU.square方法的典型用法代码示例。如果您正苦于以下问题:Python NervanaGPU.square方法的具体用法?Python NervanaGPU.square怎么用?Python NervanaGPU.square使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nervanagpu.NervanaGPU
的用法示例。
在下文中一共展示了NervanaGPU.square方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: GPU
# 需要导入模块: from nervanagpu import NervanaGPU [as 别名]
# 或者: from nervanagpu.NervanaGPU import square [as 别名]
#.........这里部分代码省略.........
def update_fc(self, out, inputs, deltas, layer=None):
"""
Compute the updated gradient for a fully connected network layer.
Arguments:
out (GPUTensor): Where to store the updated gradient value.
inputs (GPUTensor): Will be either the dataset input values (first
layer), or the outputs from the previous layer.
deltas (GPUTensor): The error values for this layer
layer (Layer): The layer object.
"""
self.ng.dot(deltas, inputs.T, out)
def fprop_conv(self, out, inputs, weights, ofmshape, ofmsize, ofmlocs,
ifmshape, links, nifm, padding, stride, ngroups, fpropbuf,
local=False):
"""
Forward propagate the inputs of a convolutional network layer to
produce output pre-activations (ready for transformation by an
activation function).
Arguments:
out (GPUTensor): Where to store the forward propagated results.
inputs (GPUTensor): Will be either the dataset input values (first
layer), or the outputs from the previous layer.
weights (GPUTensor): The weight coefficient values for this layer.
ofmshape (tuple): Dimensions of each output feature map (typically
number of height and width neurons).
ofmsize (int): Total size of each output feature map.
ofmlocs (GPUTensor): Indices giving the location of each element
in each output feature map stored in out.
ifmshape (tuple): Dimensions of each input feature map (typically
number of height and width neurons). For this
backend we expect these values to be square.
links (GPUTensor): Input receptive field indices.
nifm (int): Total number of input feature maps.
padding (int): Number of additional elements to include along each
dimension of each local receptive field during the
convolution operation.
stride (int): Number of neurons to shift the filter at each step.
ngroups (int): Number of groups.
fpropbuf (GPUTensor): Temporary storage buffer used to hold the
convolved outputs for a single receptive
field. Not used for this backend.
local (bool, optional): Whether to do local filtering (True) or
convolution (False, the default)
"""
'''
N: Number of images in mini-batch
C: Number of input feature maps
K: Number of output feature maps
D: Depth of input image
H: Height of input image
W: Width of input image
T: Depth of filter kernel
R: Height of filter kernel
S: Width of filter kernel
'''
self.ng.fprop_conv(layer=fpropbuf, I=inputs, F=weights, O=out,
alpha=1.0, repeat=1)
def bprop_conv(self, out, weights, deltas, ofmshape, ofmsize, ofmlocs,
ifmshape, links, padding, stride, nifm, ngroups, bpropbuf,