本文整理汇总了Python中nervanagpu.NervanaGPU.maximum方法的典型用法代码示例。如果您正苦于以下问题:Python NervanaGPU.maximum方法的具体用法?Python NervanaGPU.maximum怎么用?Python NervanaGPU.maximum使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nervanagpu.NervanaGPU
的用法示例。
在下文中一共展示了NervanaGPU.maximum方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: GPU
# 需要导入模块: from nervanagpu import NervanaGPU [as 别名]
# 或者: from nervanagpu.NervanaGPU import maximum [as 别名]
#.........这里部分代码省略.........
bpropbuf (GPUTensor): Temporary storage buffer used to hold the
backpropagated error for a single receptive
field
"""
op = op.lower()
if op == "max":
self.ng.bprop_pool(layer=bpropbuf, I=inputs, E=deltas, grad_I=out,
repeat=1)
else:
raise AttributeError("unexpected pooling op type: %s", op)
def logistic(self, x, out):
"""
Logistic sigmoid nonlinearity, 1/(1+exp(-x))
Arguments:
x (GPUTensor): Input tensor
out (GPUTensor): Output tensor
"""
self.ng.sig(x, out=out)
return out
def rectlin(self, x, out):
"""
Rectified Linear nonlinearity
Arguments:
x (GPUTensor): Input tensor
out (GPUTensor): Output tensor
"""
self.ng.maximum(x, 0., out=out)
return out
def rectleaky(self, x, slope, out):
out[:] = self.ng.maximum(x, x*slope)
def rectleaky_derivative(self, x, slope, out):
out[:] = self.ng.greater(x, 0) * (1.0 - slope) + slope
def sum(self, tsr, axes, out):
"""
Sum
Arguments:
tsr (GPUTensor): Input tensor
axes (int): Axis along which the reduction is performed. If axes
is None, the tensor is flattened and reduced over
both dimensions.
out (GPUTensor): Output tensor
"""
if axes is None:
sze = tsr.shape[0]*tsr.shape[1]
self.ng.sum(tsr.reshape(sze, 1), axis=0, out=out)
else:
self.ng.sum(tsr, axis=axes, out=out)
return out
def mean(self, tsr, axes, out):
"""
Calculates the arithmetic mean of the elements along the specified
axes.
Arguments: