本文整理汇总了Python中nervanagpu.NervanaGPU.rand方法的典型用法代码示例。如果您正苦于以下问题:Python NervanaGPU.rand方法的具体用法?Python NervanaGPU.rand怎么用?Python NervanaGPU.rand使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nervanagpu.NervanaGPU
的用法示例。
在下文中一共展示了NervanaGPU.rand方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: in
# 需要导入模块: from nervanagpu import NervanaGPU [as 别名]
# 或者: from nervanagpu.NervanaGPU import rand [as 别名]
for K, C, N in ((3072,3072,32),):
total = 0
for op, dimA, dimB, dimC in (
("nn", (K,C), (C,N), (K,N) ), # fprop
("tn", (K,C), (K,N), (C,N) ), # bprop
("nt", (K,N), (C,N), (K,C) ),): # update
devA = ng.empty(dimA, dtype=np.float32)
devB = ng.empty(dimB, dtype=np.float32)
devC = ng.empty(dimC, dtype=np.float32)
# fill with uniform randoms from -1 to 1
devA[:] = 2 * (.5 - ng.rand())
devB[:] = 2 * (.5 - ng.rand())
total += cublas_dot(op, devA, devB, devC, repeat=repeat, warmup=True)
print "N2 Total: ", total
total = 0
for op, dimA, dimB, dimC in (
("nt", (N,C), (K,C), (N,K) ), # fprop
("nn", (N,K), (K,C), (N,C) ), # bprop
("tn", (N,K), (N,C), (K,C) ),): # update
devA = ng.empty(dimA, dtype=np.float32)
devB = ng.empty(dimB, dtype=np.float32)
devC = ng.empty(dimC, dtype=np.float32)
示例2: in
# 需要导入模块: from nervanagpu import NervanaGPU [as 别名]
# 或者: from nervanagpu.NervanaGPU import rand [as 别名]
#(3072,3072,32+128*1),(3072,3072,64+128*1),(3072,3072,96+128*1),(3072,3072,128+128*1),
#(3072,3072,32+128*2),(3072,3072,64+128*2),(3072,3072,96+128*2),(3072,3072,128+128*2),
#(3072,3072,32+128*3),(3072,3072,64+128*3),(3072,3072,96+128*3),(3072,3072,128+128*3),):
for op, dimA, dimB, dimC in (
("nn", (K,C), (C,N), (K,N) ), # fprop
("tn", (K,C), (K,N), (C,N) ), # bprop
("nt", (K,N), (C,N), (K,C) )): # update
repeat = 5000 if C <= 3072 else 500
devA1 = ng.empty(dimA, dtype=dtype)
devB1 = ng.empty(dimB, dtype=dtype)
devC1 = ng.empty(dimC, dtype=dtype)
# fill with uniform randoms from -1 to 1
devA1[:] = 2 * (.5 - ng.rand())
devB1[:] = 2 * (.5 - ng.rand())
# just alias if same dtype
if dtype is np.float32:
devA2 = devA1
devB2 = devB1
# otherwise copy
else:
devA2 = ng.empty(dimA, dtype=np.float32)
devB2 = ng.empty(dimB, dtype=np.float32)
devA2[:] = devA1
devB2[:] = devB1
devC2 = ng.empty(dimC, dtype=np.float32)
示例3:
# 需要导入模块: from nervanagpu import NervanaGPU [as 别名]
# 或者: from nervanagpu.NervanaGPU import rand [as 别名]
str_d, str_h, str_w = conv.strides
alpha, beta = (1.0, 0.0)
dimI = conv.dimI2
dimF = conv.dimF2
dimO = conv.dimO2
print "cudnn:"
cuI = ng.empty(dimI[::-1], dtype=np.float32)
cuF = ng.empty(dimF[::-1], dtype=np.float32)
cuE = ng.empty(dimO[::-1], dtype=np.float32)
cuB = ng.empty(dimI[::-1], dtype=np.float32)
cuU = ng.empty(dimF[::-1], dtype=np.float32)
cuO = ng.empty(dimO[::-1], dtype=np.float32)
cuI[:] = 2 * (.5 - ng.rand())
cuF[:] = 2 * (.5 - ng.rand())
cuE[:] = 2 * (.5 - ng.rand())
#print drv.mem_get_info()
I_data = ctypes.c_void_p(int(cuI.gpudata))
F_data = ctypes.c_void_p(int(cuF.gpudata))
O_data = ctypes.c_void_p(int(cuO.gpudata))
E_data = ctypes.c_void_p(int(cuE.gpudata))
B_data = ctypes.c_void_p(int(cuB.gpudata))
U_data = ctypes.c_void_p(int(cuU.gpudata))
libcudnn.cudnnSetConvolution2dDescriptor(C_desc, pad_h, pad_w, str_h, str_w, 1, 1, conv_mode)
libcudnn.cudnnSetTensor4dDescriptor(I_desc, NCHW_fmt, cu_dtype, N, C, H, W)