本文整理汇总了Python中nervanagpu.NervanaGPU.fabs方法的典型用法代码示例。如果您正苦于以下问题:Python NervanaGPU.fabs方法的具体用法?Python NervanaGPU.fabs怎么用?Python NervanaGPU.fabs使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nervanagpu.NervanaGPU
的用法示例。
在下文中一共展示了NervanaGPU.fabs方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: GPU
# 需要导入模块: from nervanagpu import NervanaGPU [as 别名]
# 或者: from nervanagpu.NervanaGPU import fabs [as 别名]
#.........这里部分代码省略.........
is None, the tensor is flattened and reduced over
both dimensions.
out (GPUTensor): Output tensor
"""
if axes is None:
sze = tsr.shape[0]*tsr.shape[1]
self.ng.max(tsr.reshape(sze, 1), axis=0, out=out)
else:
self.ng.max(tsr, axis=axes, out=out)
return out
def variance(self, tsr, axes, out, mean=None):
"""
Calculates the variance of the elements along the specified
axes.
Arguments:
tsr (GPUTensor): the tensor on which to compute the variance
axes (int, list, optional): the dimension(s) along which to
variance. If set to None, we will
variance over all dimensions.
out (GPUTensor): where the result will be stored.
mean (GPUTensor): the tensor containing mean of tsr
Returns:
GPUTensor: reference to out
"""
if mean is None:
logger.error("GPUTensor requires mean to be specified.")
raise ValueError("mean not specified")
self.ng.mean(self.ng.square(tsr-mean), axis=axes, out=out)
return out
def fabs(self, x, out):
"""
Calculates absolute value of the elements in a tensor
Arguments:
x (GPUTensor): Input tensor
out (GPUTensor): Output tensor
Returns:
GPUTensor: reference to out
"""
self.ng.fabs(x, out=out)
return out
def sqrt(self, x, out):
"""
Calculates square root of the elements in a tensor
Arguments:
x (GPUTensor): Input tensor
out (GPUTensor): Output tensor
Returns:
GPUTensor: reference to out
"""
self.ng.sqrt(x, out=out)
return out
def zeros(self, shape, dtype=default_dtype, persist_values=True):
"""
Allocate a new GPUTensor and fill it with zeros.
Arguments: