当前位置: 首页>>代码示例>>Python>>正文


Python NervanaGPU.conv_layer方法代码示例

本文整理汇总了Python中nervanagpu.NervanaGPU.conv_layer方法的典型用法代码示例。如果您正苦于以下问题:Python NervanaGPU.conv_layer方法的具体用法?Python NervanaGPU.conv_layer怎么用?Python NervanaGPU.conv_layer使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nervanagpu.NervanaGPU的用法示例。


在下文中一共展示了NervanaGPU.conv_layer方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: run

# 需要导入模块: from nervanagpu import NervanaGPU [as 别名]
# 或者: from nervanagpu.NervanaGPU import conv_layer [as 别名]
def run():
    ng = NervanaGPU(stochastic_round=False)

    dt = np.float32
    # N: Number of images in mini-batch
    # C: Number of input feature maps
    # K: Number of output feature maps

    # D: Depth  of input image
    # H: Height of input image
    # W: Width  of input image

    # T: Depth  of filter kernel
    # R: Height of filter kernel
    # S: Width  of filter kernel
    # 
    # * images:      (numColors, imgSizeY, imgSizeX, numImages) with stride given
    # * filters:     (numColors, filterPixels, numFilters) if conv
    # *              (numModules, numColors, filterPixels, numFilters) otherwise
    # *
    # * targets:     (numFilters, numModulesY, numModulesX, numImages)

    N = 128
    C = 3
    K = 64

    D = 1
    H = 64
    W = 64

    T = 1
    R = 8
    S = 8

    pad_h = pad_w = 0
    str_h = str_w = 4

    layer = ng.conv_layer(dt, N, C, K,
            D=D, H=H, W=W,
            T=T, R=R, S=S,
            pad_d=0, pad_h=pad_h, pad_w=pad_w,
            str_d=1, str_h=str_h, str_w=str_w,
            grid_P=0, grid_Q=0, update_size=None)

    numImages = N 
    numFilters = K

    numModulesY = int(math.ceil(float(H - R + 1 + 2*pad_h) / str_h))
    numModulesX = int(math.ceil(float(W - S + 1 + 2*pad_w) / str_w))

    print "Num Modules ", numModulesX, numModulesY


    # Set up images, filters, and outputs
    # imgd = np.loadtxt("im1.txt")
    # img = np.zeros((64, 64, 3))
    # print imgd.shape
    # for i in range(3):
    #     img[:, :, i] = imgd[i*64:(i+1)*64, :]
    # hostImages = np.tile(img)

    hostImages = np.random.rand(C, H, W, N)
    hostFilters = np.random.uniform(low=0.0, high=1.0, size=(C, S*R, numFilters)) #np.ones((C, S*R, numFilters)) #
    hostOutputs = np.zeros((numFilters, numModulesY, numModulesX, N))

    print "Input sum", np.sum(hostImages)

    # Run cc2 kernel    
    devI = ng.array(hostImages, dtype=dt)
    devF = ng.array(hostFilters, dtype=dt)
    devO = ng.array(hostOutputs, dtype=dt)

    ng.fprop_cuda_conv(layer, devI, devF, devO)

    print "CC2 input sum: ", np.sum(devI.asnumpyarray())
    print "CC2 output sum: ", np.sum(devO.asnumpyarray())

    # Run maxwel kernel
    # images: (C * H * W, N)
    # filters:  (C * S * R , numFilters)
    # outputs:  (numFilters * numModulesX * numModulesY, N)
    devI = ng.array(hostImages.reshape((C*H*W, N)), dtype=dt)
    devF = ng.array(hostFilters.reshape((C*S*R, numFilters)), dtype=dt)
    devO2 = ng.array(hostOutputs.reshape(numFilters*numModulesX*numModulesY, N), dtype=dt)

    ng.fprop_conv(layer, devI, devF, devO2)
    print "NG input sum: ", np.sum(devI.asnumpyarray())
    print "NG output sum: ", np.sum(devO2.asnumpyarray())

    hostOutputs1 = np.reshape(devO.asnumpyarray(), devO2.shape)
    hostOutputs2 = devO2.asnumpyarray()

    for i in xrange(hostOutputs1.shape[0]):
       for j in xrange(hostOutputs1.shape[1]):
           assert(abs(hostOutputs1[i, j] - hostOutputs2[i, j]) < 1e-4)
开发者ID:jcoreyes,项目名称:nervanagpu,代码行数:97,代码来源:testcudaconv.py

示例2:

# 需要导入模块: from nervanagpu import NervanaGPU [as 别名]
# 或者: from nervanagpu.NervanaGPU import conv_layer [as 别名]
                ( 64, 64, 64, 1, 224,224, 1, 3, 3, 0,1,1, 1,1,1),
                ( 64, 64,128, 1, 112,112, 1, 3, 3, 0,1,1, 1,1,1),
                ( 64,128,128, 1, 112,112, 1, 3, 3, 0,1,1, 1,1,1),
                ( 64,128,256, 1,  56, 56, 1, 3, 3, 0,1,1, 1,1,1),
                ( 64,256,256, 1,  56, 56, 1, 3, 3, 0,1,1, 1,1,1),
                ( 64,256,512, 1,  28, 28, 1, 3, 3, 0,1,1, 1,1,1),
                ( 64,512,512, 1,  28, 28, 1, 3, 3, 0,1,1, 1,1,1),
                ( 64,512,512, 1,  14, 14, 1, 3, 3, 0,1,1, 1,1,1),

                (128,  3, 64, 1, 224,224, 1,11,11, 0,3,3, 1,4,4),  #Alexnet
                (128, 64,192, 1,  27, 27, 1, 5, 5, 0,2,2, 1,1,1),
                (128,192,384, 1,  13, 13, 1, 3, 3, 0,1,1, 1,1,1),
                (128,384,256, 1,  13, 13, 1, 3, 3, 0,1,1, 1,1,1),
                (128,256,256, 1,  13, 13, 1, 3, 3, 0,1,1, 1,1,1),):

    conv = ng.conv_layer(dtype, *dims)

    N,C,K = conv.NCK
    D,H,W = conv.DHW
    T,R,S = conv.TRS
    M,P,Q = conv.MPQ
    pad_d, pad_h, pad_w = conv.padding
    str_d, str_h, str_w = conv.strides
    alpha, beta = (1.0, 0.0)

    dimI = conv.dimI2
    dimF = conv.dimF2
    dimO = conv.dimO2

    print "cudnn:"
开发者ID:KayneWest,项目名称:nervanagpu,代码行数:32,代码来源:cudnn.py

示例3: set

# 需要导入模块: from nervanagpu import NervanaGPU [as 别名]
# 或者: from nervanagpu.NervanaGPU import conv_layer [as 别名]
print context.get_device().name()

np.set_printoptions(threshold=8193, linewidth=600, formatter={'int':lambda x: "%10d" % x,'float':lambda x: "% .0f" % x})

ops  = set(("update",)) # "fprop","bprop","update"
ones = 0
cpu  = 0  # Set CPU to 1 to check against CPU
repeat = 1
dtype = np.float32

ng = NervanaGPU(stochastic_round=False, bench=True)

conv = ng.conv_layer(
    dtype,
    16,3,8,    # N,C,K
    1,64,64,   # D,H,W
    1,3,3,     # T,R,S
    0,1,1,     # padding
    1,1,1)     # strides


dimI = conv.dimI
dimF = conv.dimF
dimO = conv.dimO

# colapse outer dimensions into one and preserve inner dimension
# this allows for easy cpu convolution in numpy
def slicable(dim, pad=0):
    dim0 = reduce(mul, dim[:-1], 1) + pad
    return (dim0, dim[-1])
开发者ID:KayneWest,项目名称:nervanagpu,代码行数:32,代码来源:conv_test.py


注:本文中的nervanagpu.NervanaGPU.conv_layer方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。