本文整理汇总了Python中nervanagpu.NervanaGPU.min方法的典型用法代码示例。如果您正苦于以下问题:Python NervanaGPU.min方法的具体用法?Python NervanaGPU.min怎么用?Python NervanaGPU.min使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nervanagpu.NervanaGPU
的用法示例。
在下文中一共展示了NervanaGPU.min方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: GPU
# 需要导入模块: from nervanagpu import NervanaGPU [as 别名]
# 或者: from nervanagpu.NervanaGPU import min [as 别名]
class GPU(Backend):
"""
Sets up a NervanaGPU based backend for matrix operations.
Note that some functions defined in the generic Backend class such as are
cross-map pooling and normalization and adaDelta are not implemented for
this backend.
"""
default_dtype = np.float32
def __init__(self, rng_seed, stochastic_round=False, device_id=0):
self.ng = NervanaGPU(stochastic_round=stochastic_round)
logger.info("Initialized NervanaGPU with stochastic_round=%s",
stochastic_round)
self.rng_seed = rng_seed
self.rng_init()
self.device_id = device_id if device_id is not None else 0
def __getstate__(self):
"""
Defines what and how we go about serializing an instance of this class.
Returns:
self.__dict__: The full contents of the backend class instance,
except for the mem_pool which is on device and
cannot be serialized.
"""
if hasattr(self, 'mem_pool') and self.mem_pool is not None:
self.mem_pool_pickle = {'shape': self.mem_pool.shape,
'dtype': np.float32}
self.mem_pool = None
return self.__dict__
def __setstate__(self, state):
"""
Defines how we go about deserializing into an instance of this class.
Arguments:
self.__dict__: The full contents of the backend class instance,
except for the mem_pool which is on device and
cannot be serialized.
"""
self.__dict__.update(state)
self.mem_pool = self.ng.empty(self.mem_pool_pickle['shape'],
dtype=self.mem_pool_pickle['dtype'])
def init_mempool(self, shape, dtype=default_dtype):
"""
Allocates a memory pool for temporary storage
"""
self.mem_pool = self.ng.empty(shape, dtype=dtype)
def alloc_host_mem(self, shape, dtype):
return drv.pagelocked_empty(shape, dtype, order="C", mem_flags=0)
def create_stream(self):
return drv.Stream()
def async_copy(self, dest, src, stream=None):
drv.memcpy_htod_async(dest.gpudata, src, stream)
def rng_init(self):
"""
Initialize and seed the pseudo random number genrator. Random numbers
are generated on the host using numpy, then transfered to device.
"""
seed = None
if 'rng_seed' in self.__dict__:
seed = self.rng_seed
logger.info("Seeding random number generator with: %s", str(seed))
np.random.seed(seed)
def flop_timing_init(self, decorate_fc, decorate_conv, decorate_ew):
"""
Initialize FLOP timing. Wraps the specified MOP calls via a decorator
to record elapsed time and number of operations.
Arguments:
decorate_fc (list): string giving the function names of fully
connected layer forward/backward/update calls
to time.
decorate_conv (list): string giving the function names of
convolutional layer forward/backward/update
calls to time.
decorate_ew (list): string giving the function names of element-wise
calls to time.
Notes:
Must be called prior to first flop_timing_start call
"""
self.start = drv.Event()
self.end = drv.Event()
self.flop_timer = FlopsDecorator(self)
self.flop_timer.decorate(decorate_fc=decorate_fc,
decorate_conv=decorate_conv,
decorate_ew=decorate_ew)
def flop_timinig_start(self):
"""
Start a new FLOP timer.
#.........这里部分代码省略.........
示例2: in
# 需要导入模块: from nervanagpu import NervanaGPU [as 别名]
# 或者: from nervanagpu.NervanaGPU import min [as 别名]
if op[1] == 't': devB1, devB2 = devB1.T, devB2.T
for tile in (32,64,128):
if op == 'nt' and tile != 128:
continue
try:
ng.dot(devA1, devB1, devC1, alpha=alpha, beta=beta, size=tile)
context.synchronize()
cublas_dot(devA2, devB2, devC2, alpha=alpha, beta=beta)
partial1 = ng.empty((devC1.shape[0],1), dtype=np.float32)
partial2 = partial1[0:1,0:1]
if ng.min(ng.finite(devC1), partial=partial1, out=partial2).get()[0,0] == 0.0:
print("Error: NaN KCN: (%d,%d,%d) ab: (%f,%f) dtype: %d" %
(K,C,N, alpha,beta, itemsize))
exit()
diff = ng.max(abs(devC2 - devC1), partial=partial1, out=partial2).get()[0,0]
mean = ng.mean(abs(devC2), partial=partial1, out=partial2).get()[0,0]
pctErr = 100 * diff / mean
if pctErr > maxerr:
print("Error: %.3f%% diff: %.5f mean %.5f op: %s tile: %d KCN: (%d,%d,%d) ab: (%f,%f) dtype: %d" %
(pctErr, diff, mean, op, tile, K,C,N, alpha,beta, itemsize))
exit()
except drv.Error as e:
print("op: %s tile: %d KCN: (%d,%d,%d) ab: (%f,%f) dtype: %d" %