当前位置: 首页>>代码示例>>Python>>正文


Python Model.train_on_batch方法代码示例

本文整理汇总了Python中keras.engine.training.Model.train_on_batch方法的典型用法代码示例。如果您正苦于以下问题:Python Model.train_on_batch方法的具体用法?Python Model.train_on_batch怎么用?Python Model.train_on_batch使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.engine.training.Model的用法示例。


在下文中一共展示了Model.train_on_batch方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_model_multiple_calls

# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import train_on_batch [as 别名]
def test_model_multiple_calls():
    x1 = Input(shape=(20,))

    y1 = sequential([
        Dense(10),
        Dense(1),
    ])(x1)
    m1 = Model(x1, y1)

    x2 = Input(shape=(25,))
    y2 = sequential([
        Dense(20),
        m1
    ])(x2)
    m2 = Model(x2, y2)
    m2.compile('adam', 'mse')

    x3 = Input(shape=(20,))
    y3 = sequential([
        Dense(25),
        m2
    ])(x3)
    m3 = Model(x3, y3)
    m3.compile('adam', 'mse')
    m3.train_on_batch(np.zeros((32, 20)), np.zeros((32, 1)))
开发者ID:berleon,项目名称:deepdecoder,代码行数:27,代码来源:test_render_gan.py

示例2: test_model_custom_target_tensors

# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import train_on_batch [as 别名]
def test_model_custom_target_tensors():
    a = Input(shape=(3,), name='input_a')
    b = Input(shape=(3,), name='input_b')

    a_2 = Dense(4, name='dense_1')(a)
    dp = Dropout(0.5, name='dropout')
    b_2 = dp(b)

    y = K.placeholder([10, 4], name='y')
    y1 = K.placeholder([10, 3], name='y1')
    y2 = K.placeholder([7, 5], name='y2')
    model = Model([a, b], [a_2, b_2])

    optimizer = 'rmsprop'
    loss = 'mse'
    loss_weights = [1., 0.5]

    # test list of target tensors
    with pytest.raises(ValueError):
        model.compile(optimizer, loss, metrics=[], loss_weights=loss_weights,
                      sample_weight_mode=None, target_tensors=[y, y1, y2])
    model.compile(optimizer, loss, metrics=[], loss_weights=loss_weights,
                  sample_weight_mode=None, target_tensors=[y, y1])
    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np],
                               {y: np.random.random((10, 4)),
                                y1: np.random.random((10, 3))})
    # test dictionary of target_tensors
    with pytest.raises(ValueError):
        model.compile(optimizer, loss,
                      metrics=[],
                      loss_weights=loss_weights,
                      sample_weight_mode=None,
                      target_tensors={'does_not_exist': y2})
    # test dictionary of target_tensors
    model.compile(optimizer, loss,
                  metrics=[],
                  loss_weights=loss_weights,
                  sample_weight_mode=None,
                  target_tensors={'dense_1': y, 'dropout': y1})
    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np],
                               {y: np.random.random((10, 4)),
                                y1: np.random.random((10, 3))})

    if K.backend() == 'tensorflow':
        import tensorflow as tf
        # test with custom TF placeholder as target
        pl_target_a = tf.placeholder('float32', shape=(None, 4))
        model.compile(optimizer='rmsprop', loss='mse',
                      target_tensors={'dense_1': pl_target_a})
        model.train_on_batch([input_a_np, input_b_np],
                             [output_a_np, output_b_np])
开发者ID:pkainz,项目名称:keras,代码行数:61,代码来源:test_training.py

示例3: test_render_gan_builder_generator_extended

# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import train_on_batch [as 别名]
def test_render_gan_builder_generator_extended():
    labels_shape = (27,)
    z_dim_offset = 50
    builder = RenderGAN(lambda x: tag3d_network_dense(x, nb_units=4),
                        generator_units=4, discriminator_units=4,
                        z_dim_offset=z_dim_offset,
                        labels_shape=(27,))
    bs = 19
    z, z_offset, labels = data(builder, bs)
    real = np.zeros((bs,) + builder.data_shape)

    labels_input = Input(shape=labels_shape)
    z = Input(shape=(z_dim_offset,))
    fake = builder.generator_given_z_and_labels([z, labels_input])
    m = Model([z, labels_input], [fake])
    m.compile('adam', 'mse')
    m.train_on_batch([z_offset, labels], real)
开发者ID:berleon,项目名称:deepdecoder,代码行数:19,代码来源:test_render_gan.py

示例4: test_model_with_partial_loss

# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import train_on_batch [as 别名]
def test_model_with_partial_loss():
    a = Input(shape=(3,), name='input_a')
    a_2 = Dense(4, name='dense_1')(a)
    dp = Dropout(0.5, name='dropout')
    a_3 = dp(a_2)
    model = Model(a, [a_2, a_3])

    optimizer = 'rmsprop'
    loss = {'dropout': 'mse'}
    model.compile(optimizer, loss, metrics=['mae'])

    input_a_np = np.random.random((10, 3))
    output_a_np = np.random.random((10, 4))

    # test train_on_batch
    out = model.train_on_batch(input_a_np, output_a_np)
    out = model.test_on_batch(input_a_np, output_a_np)
    # fit
    out = model.fit(input_a_np, [output_a_np])
    # evaluate
    out = model.evaluate(input_a_np, [output_a_np])

    # Same without dropout.
    a = Input(shape=(3,), name='input_a')
    a_2 = Dense(4, name='dense_1')(a)
    a_3 = Dense(4, name='dense_2')(a_2)
    model = Model(a, [a_2, a_3])

    optimizer = 'rmsprop'
    loss = {'dense_2': 'mse'}
    model.compile(optimizer, loss, metrics={'dense_1': 'mae'})

    # test train_on_batch
    out = model.train_on_batch(input_a_np, output_a_np)
    out = model.test_on_batch(input_a_np, output_a_np)
    # fit
    out = model.fit(input_a_np, [output_a_np])
    # evaluate
    out = model.evaluate(input_a_np, [output_a_np])
开发者ID:pkainz,项目名称:keras,代码行数:41,代码来源:test_training.py

示例5: train_f_enc

# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import train_on_batch [as 别名]
    def train_f_enc(self, steps_list, epoch=50):
        print("training f_enc")
        f_add0 = Sequential(name='f_add0')
        f_add0.add(self.f_enc)
        f_add0.add(Dense(FIELD_DEPTH))
        f_add0.add(Activation('softmax', name='softmax_add0'))

        f_add1 = Sequential(name='f_add1')
        f_add1.add(self.f_enc)
        f_add1.add(Dense(FIELD_DEPTH))
        f_add1.add(Activation('softmax', name='softmax_add1'))

        env_model = Model(self.f_enc.inputs, [f_add0.output, f_add1.output], name="env_model")
        env_model.compile(optimizer='adam', loss=['categorical_crossentropy']*2)

        for ep in range(epoch):
            losses = []
            for idx, steps_dict in enumerate(steps_list):
                prev = None
                for step in steps_dict['steps']:
                    x = self.convert_input(step.input)[:2]
                    env_values = step.input.env.reshape((4, -1))
                    in1 = np.clip(env_values[0].argmax() - 1, 0, 9)
                    in2 = np.clip(env_values[1].argmax() - 1, 0, 9)
                    carry = np.clip(env_values[2].argmax() - 1, 0, 9)
                    y_num = in1 + in2 + carry
                    now = (in1, in2, carry)
                    if prev == now:
                        continue
                    prev = now
                    y0 = to_one_hot_array((y_num %  10)+1, FIELD_DEPTH)
                    y1 = to_one_hot_array((y_num // 10)+1, FIELD_DEPTH)
                    y = [yy.reshape((self.batch_size, -1)) for yy in [y0, y1]]
                    loss = env_model.train_on_batch(x, y)
                    losses.append(loss)
            print("ep %3d: loss=%s" % (ep, np.average(losses)))
            if np.average(losses) < 1e-06:
                break
开发者ID:episodeyang,项目名称:deep_learning_notes,代码行数:40,代码来源:model.py

示例6: test_model_methods

# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import train_on_batch [as 别名]
def test_model_methods():
    a = Input(shape=(3,), name='input_a')
    b = Input(shape=(3,), name='input_b')

    a_2 = Dense(4, name='dense_1')(a)
    dp = Dropout(0.5, name='dropout')
    b_2 = dp(b)

    model = Model([a, b], [a_2, b_2])

    optimizer = 'rmsprop'
    loss = 'mse'
    loss_weights = [1., 0.5]
    model.compile(optimizer, loss, metrics=[], loss_weights=loss_weights,
                  sample_weight_mode=None)

    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    # test train_on_batch
    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    out = model.train_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                               [output_a_np, output_b_np])
    out = model.train_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                               {'dense_1': output_a_np, 'dropout': output_b_np})

    # test fit
    out = model.fit([input_a_np, input_b_np],
                    [output_a_np, output_b_np], nb_epoch=1, batch_size=4)
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    [output_a_np, output_b_np], nb_epoch=1, batch_size=4)
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    {'dense_1': output_a_np, 'dropout': output_b_np},
                    nb_epoch=1, batch_size=4)

    # test validation_split
    out = model.fit([input_a_np, input_b_np],
                    [output_a_np, output_b_np],
                    nb_epoch=1, batch_size=4, validation_split=0.5)
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    [output_a_np, output_b_np],
                    nb_epoch=1, batch_size=4, validation_split=0.5)
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    {'dense_1': output_a_np, 'dropout': output_b_np},
                    nb_epoch=1, batch_size=4, validation_split=0.5)

    # test validation data
    out = model.fit([input_a_np, input_b_np],
                    [output_a_np, output_b_np],
                    nb_epoch=1, batch_size=4,
                    validation_data=([input_a_np, input_b_np], [output_a_np, output_b_np]))
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    [output_a_np, output_b_np],
                    nb_epoch=1, batch_size=4, validation_split=0.5,
                    validation_data=({'input_a': input_a_np, 'input_b': input_b_np}, [output_a_np, output_b_np]))
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    {'dense_1': output_a_np, 'dropout': output_b_np},
                    nb_epoch=1, batch_size=4, validation_split=0.5,
                    validation_data=({'input_a': input_a_np, 'input_b': input_b_np}, {'dense_1': output_a_np, 'dropout': output_b_np}))

    # test_on_batch
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    out = model.test_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                              [output_a_np, output_b_np])
    out = model.test_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                              {'dense_1': output_a_np, 'dropout': output_b_np})

    # predict_on_batch
    out = model.predict_on_batch([input_a_np, input_b_np])
    out = model.predict_on_batch({'input_a': input_a_np, 'input_b': input_b_np})

    # predict, evaluate
    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    out = model.evaluate([input_a_np, input_b_np], [output_a_np, output_b_np], batch_size=4)
    out = model.predict([input_a_np, input_b_np], batch_size=4)

    # with sample_weight
    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    sample_weight = [None, np.random.random((10,))]
    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np],
                               sample_weight=sample_weight)

    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np],
#.........这里部分代码省略.........
开发者ID:BigeyeDestroyer,项目名称:keras,代码行数:103,代码来源:test_training.py

示例7: test_model_methods

# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import train_on_batch [as 别名]
def test_model_methods():
    a = Input(shape=(3,), name='input_a')
    b = Input(shape=(3,), name='input_b')

    a_2 = Dense(4, name='dense_1')(a)
    dp = Dropout(0.5, name='dropout')
    b_2 = dp(b)

    model = Model([a, b], [a_2, b_2])

    optimizer = 'rmsprop'
    loss = 'mse'
    loss_weights = [1., 0.5]

    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))
    input_a_df = pd.DataFrame(input_a_np)
    input_b_df = pd.DataFrame(input_b_np)

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))
    output_a_df = pd.DataFrame(output_a_np)
    output_b_df = pd.DataFrame(output_b_np)

    # training/testing doesn't work before compiling.
    with pytest.raises(RuntimeError):
        model.train_on_batch([input_a_np, input_b_np], [output_a_np, output_b_np])

    model.compile(optimizer, loss, metrics=[], loss_weights=loss_weights,
                  sample_weight_mode=None)

    # test train_on_batch
    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    out = model.train_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                               [output_a_np, output_b_np])
    out = model.train_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                               {'dense_1': output_a_np, 'dropout': output_b_np})
    out = model.train_on_batch([input_a_df, input_b_df],
                               [output_a_df, output_b_df])

    # test fit
    out = model.fit([input_a_np, input_b_np],
                    [output_a_np, output_b_np], epochs=1, batch_size=4)
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    [output_a_np, output_b_np], epochs=1, batch_size=4)
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    {'dense_1': output_a_np, 'dropout': output_b_np},
                    epochs=1, batch_size=4)
    out = model.fit([input_a_df, input_b_df],
                    [output_a_df, output_b_df], epochs=1, batch_size=4)

    # test validation_split
    out = model.fit([input_a_np, input_b_np],
                    [output_a_np, output_b_np],
                    epochs=1, batch_size=4, validation_split=0.5)
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    [output_a_np, output_b_np],
                    epochs=1, batch_size=4, validation_split=0.5)

    # test validation data
    out = model.fit([input_a_np, input_b_np],
                    [output_a_np, output_b_np],
                    epochs=1, batch_size=4,
                    validation_data=([input_a_np, input_b_np], [output_a_np, output_b_np]))
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    [output_a_np, output_b_np],
                    epochs=1, batch_size=4, validation_split=0.5,
                    validation_data=({'input_a': input_a_np, 'input_b': input_b_np}, [output_a_np, output_b_np]))
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    {'dense_1': output_a_np, 'dropout': output_b_np},
                    epochs=1, batch_size=4, validation_split=0.5,
                    validation_data=(
                        {'input_a': input_a_np, 'input_b': input_b_np},
                        {'dense_1': output_a_np, 'dropout': output_b_np}))

    # test_on_batch
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    out = model.test_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                              [output_a_np, output_b_np])
    out = model.test_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                              {'dense_1': output_a_np, 'dropout': output_b_np})
    out = model.test_on_batch([input_a_df, input_b_df],
                              [output_a_df, output_b_df])

    # predict_on_batch
    out = model.predict_on_batch([input_a_np, input_b_np])
    out = model.predict_on_batch({'input_a': input_a_np, 'input_b': input_b_np})
    out = model.predict_on_batch([input_a_df, input_b_df])

    # predict, evaluate
    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    out = model.evaluate([input_a_np, input_b_np], [output_a_np, output_b_np], batch_size=4)
    out = model.evaluate([input_a_df, input_b_df], [output_a_df, output_b_df], batch_size=4)
#.........这里部分代码省略.........
开发者ID:pkainz,项目名称:keras,代码行数:103,代码来源:test_training.py

示例8: test_model_with_external_loss

# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import train_on_batch [as 别名]
def test_model_with_external_loss():
    # None loss, only regularization loss.
    a = Input(shape=(3,), name='input_a')
    a_2 = Dense(4, name='dense_1',
                kernel_regularizer='l1',
                bias_regularizer='l2')(a)
    dp = Dropout(0.5, name='dropout')
    a_3 = dp(a_2)

    model = Model(a, [a_2, a_3])

    optimizer = 'rmsprop'
    loss = None
    model.compile(optimizer, loss, metrics=['mae'])

    input_a_np = np.random.random((10, 3))

    # test train_on_batch
    out = model.train_on_batch(input_a_np, None)
    out = model.test_on_batch(input_a_np, None)
    # fit
    out = model.fit(input_a_np, None)
    # evaluate
    out = model.evaluate(input_a_np, None)

    # No dropout, external loss.
    a = Input(shape=(3,), name='input_a')
    a_2 = Dense(4, name='dense_1')(a)
    a_3 = Dense(4, name='dense_2')(a)

    model = Model(a, [a_2, a_3])
    model.add_loss(K.mean(a_3 + a_2))

    optimizer = 'rmsprop'
    loss = None
    model.compile(optimizer, loss, metrics=['mae'])

    # test train_on_batch
    out = model.train_on_batch(input_a_np, None)
    out = model.test_on_batch(input_a_np, None)
    # fit
    out = model.fit(input_a_np, None)
    # evaluate
    out = model.evaluate(input_a_np, None)

    # Test fit with no external data at all.
    if K.backend() == 'tensorflow':
        import tensorflow as tf

        a = Input(tensor=tf.Variable(input_a_np, dtype=tf.float32))
        a_2 = Dense(4, name='dense_1')(a)
        a_2 = Dropout(0.5, name='dropout')(a_2)
        model = Model(a, a_2)
        model.add_loss(K.mean(a_2))

        model.compile(optimizer='rmsprop',
                      loss=None,
                      metrics=['mean_squared_error'])

        # test train_on_batch
        out = model.train_on_batch(None, None)
        out = model.test_on_batch(None, None)
        out = model.predict_on_batch(None)

        # test fit
        with pytest.raises(ValueError):
            out = model.fit(None, None, epochs=1, batch_size=10)
        out = model.fit(None, None, epochs=1, steps_per_epoch=1)

        # test fit with validation data
        with pytest.raises(ValueError):
            out = model.fit(None, None,
                            epochs=1,
                            steps_per_epoch=None,
                            validation_steps=2)
        out = model.fit(None, None,
                        epochs=1,
                        steps_per_epoch=2,
                        validation_steps=2)

        # test evaluate
        with pytest.raises(ValueError):
            out = model.evaluate(None, None, batch_size=10)
        out = model.evaluate(None, None, steps=3)

        # test predict
        with pytest.raises(ValueError):
            out = model.predict(None, batch_size=10)
        out = model.predict(None, steps=3)
        assert out.shape == (10 * 3, 4)

        # Test multi-output model without external data.
        a = Input(tensor=tf.Variable(input_a_np, dtype=tf.float32))
        a_1 = Dense(4, name='dense_1')(a)
        a_2 = Dropout(0.5, name='dropout')(a_1)
        model = Model(a, [a_1, a_2])
        model.add_loss(K.mean(a_2))
        model.compile(optimizer='rmsprop',
                      loss=None,
                      metrics=['mean_squared_error'])
#.........这里部分代码省略.........
开发者ID:pkainz,项目名称:keras,代码行数:103,代码来源:test_training.py

示例9: test_model_with_input_feed_tensor

# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import train_on_batch [as 别名]
def test_model_with_input_feed_tensor():
    """We test building a model with a TF variable as input.
    We should be able to call fit, evaluate, predict,
    by only passing them data for the placeholder inputs
    in the model.
    """
    import tensorflow as tf

    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    a = Input(tensor=tf.Variable(input_a_np, dtype=tf.float32))
    b = Input(shape=(3,), name='input_b')

    a_2 = Dense(4, name='dense_1')(a)
    dp = Dropout(0.5, name='dropout')
    b_2 = dp(b)

    model = Model([a, b], [a_2, b_2])
    model.summary()

    optimizer = 'rmsprop'
    loss = 'mse'
    loss_weights = [1., 0.5]
    model.compile(optimizer, loss, metrics=['mean_squared_error'],
                  loss_weights=loss_weights,
                  sample_weight_mode=None)

    # test train_on_batch
    out = model.train_on_batch(input_b_np,
                               [output_a_np, output_b_np])
    out = model.train_on_batch({'input_b': input_b_np},
                               [output_a_np, output_b_np])
    out = model.test_on_batch({'input_b': input_b_np},
                              [output_a_np, output_b_np])
    out = model.predict_on_batch({'input_b': input_b_np})

    # test fit
    out = model.fit({'input_b': input_b_np},
                    [output_a_np, output_b_np], epochs=1, batch_size=10)
    out = model.fit(input_b_np,
                    [output_a_np, output_b_np], epochs=1, batch_size=10)

    # test evaluate
    out = model.evaluate({'input_b': input_b_np},
                         [output_a_np, output_b_np], batch_size=10)
    out = model.evaluate(input_b_np,
                         [output_a_np, output_b_np], batch_size=10)

    # test predict
    out = model.predict({'input_b': input_b_np}, batch_size=10)
    out = model.predict(input_b_np, batch_size=10)
    assert len(out) == 2

    # Now test a model with a single input
    # i.e. we don't pass any data to fit the model.
    a = Input(tensor=tf.Variable(input_a_np, dtype=tf.float32))
    a_2 = Dense(4, name='dense_1')(a)
    a_2 = Dropout(0.5, name='dropout')(a_2)
    model = Model(a, a_2)
    model.summary()

    optimizer = 'rmsprop'
    loss = 'mse'
    model.compile(optimizer, loss, metrics=['mean_squared_error'])

    # test train_on_batch
    out = model.train_on_batch(None,
                               output_a_np)
    out = model.train_on_batch(None,
                               output_a_np)
    out = model.test_on_batch(None,
                              output_a_np)
    out = model.predict_on_batch(None)
    out = model.train_on_batch([],
                               output_a_np)
    out = model.train_on_batch({},
                               output_a_np)

    # test fit
    out = model.fit(None,
                    output_a_np, epochs=1, batch_size=10)
    out = model.fit(None,
                    output_a_np, epochs=1, batch_size=10)

    # test evaluate
    out = model.evaluate(None,
                         output_a_np, batch_size=10)
    out = model.evaluate(None,
                         output_a_np, batch_size=10)

    # test predict
    out = model.predict(None, steps=3)
    out = model.predict(None, steps=3)
    assert out.shape == (10 * 3, 4)

    # Same, without learning phase
#.........这里部分代码省略.........
开发者ID:pkainz,项目名称:keras,代码行数:103,代码来源:test_training.py

示例10: test_pandas_dataframe

# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import train_on_batch [as 别名]
def test_pandas_dataframe():
    input_a = Input(shape=(3,), name='input_a')
    input_b = Input(shape=(3,), name='input_b')

    x = Dense(4, name='dense_1')(input_a)
    y = Dense(3, name='desne_2')(input_b)

    model_1 = Model(inputs=input_a, outputs=x)
    model_2 = Model(inputs=[input_a, input_b], outputs=[x, y])

    optimizer = 'rmsprop'
    loss = 'mse'

    model_1.compile(optimizer=optimizer, loss=loss)
    model_2.compile(optimizer=optimizer, loss=loss)

    input_a_df = pd.DataFrame(np.random.random((10, 3)))
    input_b_df = pd.DataFrame(np.random.random((10, 3)))

    output_a_df = pd.DataFrame(np.random.random((10, 4)))
    output_b_df = pd.DataFrame(np.random.random((10, 3)))

    model_1.fit(input_a_df,
                output_a_df)
    model_2.fit([input_a_df, input_b_df],
                [output_a_df, output_b_df])
    model_1.fit([input_a_df],
                [output_a_df])
    model_1.fit({'input_a': input_a_df},
                output_a_df)
    model_2.fit({'input_a': input_a_df, 'input_b': input_b_df},
                [output_a_df, output_b_df])

    model_1.predict(input_a_df)
    model_2.predict([input_a_df, input_b_df])
    model_1.predict([input_a_df])
    model_1.predict({'input_a': input_a_df})
    model_2.predict({'input_a': input_a_df, 'input_b': input_b_df})

    model_1.predict_on_batch(input_a_df)
    model_2.predict_on_batch([input_a_df, input_b_df])
    model_1.predict_on_batch([input_a_df])
    model_1.predict_on_batch({'input_a': input_a_df})
    model_2.predict_on_batch({'input_a': input_a_df, 'input_b': input_b_df})

    model_1.evaluate(input_a_df,
                     output_a_df)
    model_2.evaluate([input_a_df, input_b_df],
                     [output_a_df, output_b_df])
    model_1.evaluate([input_a_df],
                     [output_a_df])
    model_1.evaluate({'input_a': input_a_df},
                     output_a_df)
    model_2.evaluate({'input_a': input_a_df, 'input_b': input_b_df},
                     [output_a_df, output_b_df])

    model_1.train_on_batch(input_a_df,
                           output_a_df)
    model_2.train_on_batch([input_a_df, input_b_df],
                           [output_a_df, output_b_df])
    model_1.train_on_batch([input_a_df],
                           [output_a_df])
    model_1.train_on_batch({'input_a': input_a_df},
                           output_a_df)
    model_2.train_on_batch({'input_a': input_a_df, 'input_b': input_b_df},
                           [output_a_df, output_b_df])

    model_1.test_on_batch(input_a_df,
                          output_a_df)
    model_2.test_on_batch([input_a_df, input_b_df],
                          [output_a_df, output_b_df])
    model_1.test_on_batch([input_a_df],
                          [output_a_df])
    model_1.test_on_batch({'input_a': input_a_df},
                          output_a_df)
    model_2.test_on_batch({'input_a': input_a_df, 'input_b': input_b_df},
                          [output_a_df, output_b_df])
开发者ID:Peque,项目名称:keras,代码行数:79,代码来源:test_training.py

示例11: test_model_methods

# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import train_on_batch [as 别名]
def test_model_methods():
    a = Input(shape=(3,), name='input_a')
    b = Input(shape=(3,), name='input_b')

    a_2 = Dense(4, name='dense_1')(a)
    dp = Dropout(0.5, name='dropout')
    b_2 = dp(b)

    model = Model([a, b], [a_2, b_2])

    optimizer = 'rmsprop'
    loss = 'mse'
    loss_weights = [1., 0.5]
    model.compile(optimizer, loss, metrics=[], loss_weights=loss_weights,
                  sample_weight_mode=None)

    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    # test train_on_batch
    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    out = model.train_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                               [output_a_np, output_b_np])
    out = model.train_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                               {'dense_1': output_a_np, 'dropout': output_b_np})

    # test fit
    out = model.fit([input_a_np, input_b_np],
                    [output_a_np, output_b_np], nb_epoch=1, batch_size=4)
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    [output_a_np, output_b_np], nb_epoch=1, batch_size=4)
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    {'dense_1': output_a_np, 'dropout': output_b_np},
                    nb_epoch=1, batch_size=4)

    # test validation_split
    out = model.fit([input_a_np, input_b_np],
                    [output_a_np, output_b_np],
                    nb_epoch=1, batch_size=4, validation_split=0.5)
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    [output_a_np, output_b_np],
                    nb_epoch=1, batch_size=4, validation_split=0.5)
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    {'dense_1': output_a_np, 'dropout': output_b_np},
                    nb_epoch=1, batch_size=4, validation_split=0.5)

    # test validation data
    out = model.fit([input_a_np, input_b_np],
                    [output_a_np, output_b_np],
                    nb_epoch=1, batch_size=4,
                    validation_data=([input_a_np, input_b_np], [output_a_np, output_b_np]))
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    [output_a_np, output_b_np],
                    nb_epoch=1, batch_size=4, validation_split=0.5,
                    validation_data=({'input_a': input_a_np, 'input_b': input_b_np}, [output_a_np, output_b_np]))
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    {'dense_1': output_a_np, 'dropout': output_b_np},
                    nb_epoch=1, batch_size=4, validation_split=0.5,
                    validation_data=({'input_a': input_a_np, 'input_b': input_b_np}, {'dense_1': output_a_np, 'dropout': output_b_np}))

    # test_on_batch
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    out = model.test_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                              [output_a_np, output_b_np])
    out = model.test_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                              {'dense_1': output_a_np, 'dropout': output_b_np})

    # predict_on_batch
    out = model.predict_on_batch([input_a_np, input_b_np])
    out = model.predict_on_batch({'input_a': input_a_np, 'input_b': input_b_np})

    # predict, evaluate
    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    out = model.evaluate([input_a_np, input_b_np], [output_a_np, output_b_np], batch_size=4)
    out = model.predict([input_a_np, input_b_np], batch_size=4)

    # with sample_weight
    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    sample_weight = [None, np.random.random((10,))]
    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np],
                               sample_weight=sample_weight)

    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np],
#.........这里部分代码省略.........
开发者ID:Abhipray,项目名称:keras,代码行数:103,代码来源:test_training.py

示例12: __init__

# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import train_on_batch [as 别名]
class SeqGAN:
    def __init__(self, g, d, m, g_optimizer, d_optimizer):
        self.g = g
        self.d = d
        self.m = m

        self.z, self.seq_input = self.g.inputs
        self.fake_prob, = self.g.outputs
        with trainable(m, False):
            m_input = merge([self.seq_input, self.fake_prob], mode='concat', concat_axis=1)
            self.m_realness = self.m(m_input)
            self.model_fit_g = Model([self.z, self.seq_input], [self.m_realness])
            self.model_fit_g.compile(g_optimizer, K.binary_crossentropy)

        self.d.compile(d_optimizer, loss=K.binary_crossentropy)

    def z_shape(self, batch_size=64):
        layer, _, _ = self.z._keras_history
        return (batch_size,) + layer.output_shape[1:]

    def sample_z(self, batch_size=64):
        shape = self.z_shape(batch_size)
        return np.random.uniform(-1, 1, shape)

    def generate(self, z, seq_input, batch_size=32):
        return self.g.predict([z, seq_input], batch_size=batch_size)

    def train_on_batch(self, seq_input, real, d_target=None):
        nb_real = len(real)
        nb_fake = len(seq_input)
        if d_target is None:
            d_target = np.concatenate([
                np.zeros((nb_fake, 1)),
                np.ones((nb_real, 1))
            ])
        fake_prob = self.generate(self.sample_z(nb_fake), seq_input)
        fake = np.concatenate([seq_input, prob_to_sentence(fake_prob)], axis=1)
        fake_and_real = np.concatenate([fake, real], axis=0)
        d_loss = self.d.train_on_batch(fake_and_real, d_target)
        d_realness = self.d.predict(fake)
        m_loss = self.m.train_on_batch(
            np.concatenate([seq_input, fake_prob], axis=1), d_realness)
        g_loss = self.model_fit_g.train_on_batch([self.sample_z(nb_fake), seq_input],
                                                 np.ones((nb_fake, 1)))
        return g_loss, d_loss, m_loss

    def fit_generator(self, generator, nb_epoch, nb_batches_per_epoch, callbacks=[],
                      batch_size=None,
                      verbose=False):
        if batch_size is None:
            batch_size = 2*len(next(generator)[0])

        out_labels = ['g', 'd', 'm']

        self.history = cbks.History()
        callbacks = [cbks.BaseLogger()] + callbacks + [self.history]
        if verbose:
            callbacks += [cbks.ProgbarLogger()]
        callbacks = cbks.CallbackList(callbacks)
        callbacks._set_model(self)
        callbacks._set_params({
            'nb_epoch': nb_epoch,
            'nb_sample': nb_batches_per_epoch*batch_size,
            'verbose': verbose,
            'metrics': out_labels,
        })
        callbacks.on_train_begin()

        for e in range(nb_epoch):
            callbacks.on_epoch_begin(e)
            for batch_index, (seq_input, real) in enumerate(generator):
                callbacks.on_batch_begin(batch_index)
                batch_logs = {}
                batch_logs['batch'] = batch_index
                batch_logs['size'] = len(real) + len(seq_input
                                                     )
                outs = self.train_on_batch(seq_input, real)

                for l, o in zip(out_labels, outs):
                    batch_logs[l] = o

                callbacks.on_batch_end(batch_index, batch_logs)
                if batch_index + 1 == nb_batches_per_epoch:
                    break

            callbacks.on_epoch_end(e)
        callbacks.on_train_end()
开发者ID:berleon,项目名称:seqgan,代码行数:89,代码来源:seqgan.py

示例13: test_model_methods

# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import train_on_batch [as 别名]
def test_model_methods():
    a = Input(shape=(3,), name='input_a')
    b = Input(shape=(3,), name='input_b')

    a_2 = Dense(4, name='dense_1')(a)
    dp = Dropout(0.5, name='dropout')
    b_2 = dp(b)

    model = Model([a, b], [a_2, b_2])

    optimizer = 'rmsprop'
    loss = 'mse'
    loss_weights = [1., 0.5]

    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    # training/testing doesn't work before compiling.
    with pytest.raises(RuntimeError):
        model.train_on_batch([input_a_np, input_b_np], [output_a_np, output_b_np])

    model.compile(optimizer, loss, metrics=[], loss_weights=loss_weights,
                  sample_weight_mode=None)

    # test train_on_batch
    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    out = model.train_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                               [output_a_np, output_b_np])
    out = model.train_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                               {'dense_1': output_a_np, 'dropout': output_b_np})

    # test fit
    out = model.fit([input_a_np, input_b_np],
                    [output_a_np, output_b_np], epochs=1, batch_size=4)
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    [output_a_np, output_b_np], epochs=1, batch_size=4)
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    {'dense_1': output_a_np, 'dropout': output_b_np},
                    epochs=1, batch_size=4)

    # test validation_split
    out = model.fit([input_a_np, input_b_np],
                    [output_a_np, output_b_np],
                    epochs=1, batch_size=4, validation_split=0.5)
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    [output_a_np, output_b_np],
                    epochs=1, batch_size=4, validation_split=0.5)

    # test validation data
    out = model.fit([input_a_np, input_b_np],
                    [output_a_np, output_b_np],
                    epochs=1, batch_size=4,
                    validation_data=([input_a_np, input_b_np], [output_a_np, output_b_np]))
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    [output_a_np, output_b_np],
                    epochs=1, batch_size=4, validation_split=0.5,
                    validation_data=({'input_a': input_a_np, 'input_b': input_b_np}, [output_a_np, output_b_np]))
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    {'dense_1': output_a_np, 'dropout': output_b_np},
                    epochs=1, batch_size=4, validation_split=0.5,
                    validation_data=(
                        {'input_a': input_a_np, 'input_b': input_b_np},
                        {'dense_1': output_a_np, 'dropout': output_b_np}))

    # test_on_batch
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    out = model.test_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                              [output_a_np, output_b_np])
    out = model.test_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                              {'dense_1': output_a_np, 'dropout': output_b_np})

    # predict_on_batch
    out = model.predict_on_batch([input_a_np, input_b_np])
    out = model.predict_on_batch({'input_a': input_a_np, 'input_b': input_b_np})

    # predict, evaluate
    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    out = model.evaluate([input_a_np, input_b_np], [output_a_np, output_b_np], batch_size=4)
    out = model.predict([input_a_np, input_b_np], batch_size=4)

    # with sample_weight
    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    sample_weight = [None, np.random.random((10,))]
    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np],
#.........这里部分代码省略.........
开发者ID:Dapid,项目名称:keras,代码行数:103,代码来源:test_training.py

示例14: AdditionNPIModel

# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import train_on_batch [as 别名]

#.........这里部分代码省略.........
            ok_rate = []
            np.random.shuffle(steps_list)
            for idx, steps_dict in enumerate(steps_list):
                question = copy(steps_dict['q'])
                question_key = self.dict_to_str(question)
                if self.question_test(addition_env, npi_runner, question):
                    if correct_count[question_key] == 0:
                        correct_new += 1
                    correct_count[question_key] += 1
                    print("GOOD!: ep=%2d idx=%3d :%s CorrectCount=%s" % (ep, idx, self.dict_to_str(question), correct_count[question_key]))
                    ok_rate.append(1)
                    if skip_correct or int(math.sqrt(correct_count[question_key])) ** 2 != correct_count[question_key]:
                        continue
                else:
                    ok_rate.append(0)
                    if correct_count[question_key] > 0:
                        print("Degraded: ep=%2d idx=%3d :%s CorrectCount=%s -> 0" % (ep, idx, self.dict_to_str(question), correct_count[question_key]))
                        correct_count[question_key] = 0
                        wrong_new += 1

                steps = steps_dict['steps']
                xs = []
                ys = []
                ws = []
                for step in steps:
                    xs.append(self.convert_input(step.input))
                    y, w = self.convert_output(step.output)
                    ys.append(y)
                    ws.append(w)

                self.reset()

                for i, (x, y, w) in enumerate(zip(xs, ys, ws)):
                    loss = self.model.train_on_batch(x, y, sample_weight=w)
                    if not np.isfinite(loss):
                        print("Loss is not finite!, Last Input=%s" % ([i, (x, y, w)]))
                        self.print_weights(last_weights, detail=True)
                        raise RuntimeError("Loss is not finite!")
                    losses.append(loss)
                    last_weights = self.model.get_weights()
            if losses:
                cur_loss = np.average(losses)
                print("ep=%2d: ok_rate=%.2f%% (+%s -%s): ave loss %s (%s samples)" %
                      (ep, np.average(ok_rate)*100, correct_new, wrong_new, cur_loss, len(steps_list)))
                # self.print_weights()
                if correct_new + wrong_new == 0:
                    no_change_count += 1
                else:
                    no_change_count = 0

                if math.fabs(1 - cur_loss/last_loss) < 0.001 and no_change_count > 5:
                    print("math.fabs(1 - cur_loss/last_loss) < 0.001 and no_change_count > 5:")
                    return False
                last_loss = cur_loss
                print("=" * 80)
            self.save()
            if np.average(ok_rate) >= pass_rate:
                return True
        return False

    def update_learning_rate(self, learning_rate, arg_weight=1.):
        print("Re-Compile Model lr=%s aw=%s" % (learning_rate, arg_weight))
        self.compile_model(learning_rate, arg_weight=arg_weight)

    def train_f_enc(self, steps_list, epoch=50):
        print("training f_enc")
开发者ID:StitchDeng,项目名称:keras_npi,代码行数:70,代码来源:model.py


注:本文中的keras.engine.training.Model.train_on_batch方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。