本文整理汇总了Python中keras.engine.training.Model.evaluate方法的典型用法代码示例。如果您正苦于以下问题:Python Model.evaluate方法的具体用法?Python Model.evaluate怎么用?Python Model.evaluate使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.engine.training.Model
的用法示例。
在下文中一共展示了Model.evaluate方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_sparse_placeholder_fit
# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import evaluate [as 别名]
def test_sparse_placeholder_fit():
test_inputs = [sparse.random(6, 3, density=0.25).tocsr() for _ in range(2)]
test_outputs = [sparse.random(6, i, density=0.25).tocsr() for i in range(3, 5)]
in1 = Input(shape=(3,))
in2 = Input(shape=(3,), sparse=True)
out1 = Dropout(0.5, name='dropout')(in1)
out2 = Dense(4, name='dense_1')(in2)
model = Model([in1, in2], [out1, out2])
model.predict(test_inputs, batch_size=2)
model.compile('rmsprop', 'mse')
model.fit(test_inputs, test_outputs, epochs=1, batch_size=2, validation_split=0.5)
model.evaluate(test_inputs, test_outputs, batch_size=2)
示例2: test_model_with_partial_loss
# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import evaluate [as 别名]
def test_model_with_partial_loss():
a = Input(shape=(3,), name='input_a')
a_2 = Dense(4, name='dense_1')(a)
dp = Dropout(0.5, name='dropout')
a_3 = dp(a_2)
model = Model(a, [a_2, a_3])
optimizer = 'rmsprop'
loss = {'dropout': 'mse'}
model.compile(optimizer, loss, metrics=['mae'])
input_a_np = np.random.random((10, 3))
output_a_np = np.random.random((10, 4))
# test train_on_batch
out = model.train_on_batch(input_a_np, output_a_np)
out = model.test_on_batch(input_a_np, output_a_np)
# fit
out = model.fit(input_a_np, [output_a_np])
# evaluate
out = model.evaluate(input_a_np, [output_a_np])
# Same without dropout.
a = Input(shape=(3,), name='input_a')
a_2 = Dense(4, name='dense_1')(a)
a_3 = Dense(4, name='dense_2')(a_2)
model = Model(a, [a_2, a_3])
optimizer = 'rmsprop'
loss = {'dense_2': 'mse'}
model.compile(optimizer, loss, metrics={'dense_1': 'mae'})
# test train_on_batch
out = model.train_on_batch(input_a_np, output_a_np)
out = model.test_on_batch(input_a_np, output_a_np)
# fit
out = model.fit(input_a_np, [output_a_np])
# evaluate
out = model.evaluate(input_a_np, [output_a_np])
示例3: test_model_methods
# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import evaluate [as 别名]
def test_model_methods():
a = Input(shape=(3,), name='input_a')
b = Input(shape=(3,), name='input_b')
a_2 = Dense(4, name='dense_1')(a)
dp = Dropout(0.5, name='dropout')
b_2 = dp(b)
model = Model([a, b], [a_2, b_2])
optimizer = 'rmsprop'
loss = 'mse'
loss_weights = [1., 0.5]
model.compile(optimizer, loss, metrics=[], loss_weights=loss_weights,
sample_weight_mode=None)
input_a_np = np.random.random((10, 3))
input_b_np = np.random.random((10, 3))
output_a_np = np.random.random((10, 4))
output_b_np = np.random.random((10, 3))
# test train_on_batch
out = model.train_on_batch([input_a_np, input_b_np],
[output_a_np, output_b_np])
out = model.train_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
[output_a_np, output_b_np])
out = model.train_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
{'dense_1': output_a_np, 'dropout': output_b_np})
# test fit
out = model.fit([input_a_np, input_b_np],
[output_a_np, output_b_np], nb_epoch=1, batch_size=4)
out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
[output_a_np, output_b_np], nb_epoch=1, batch_size=4)
out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
{'dense_1': output_a_np, 'dropout': output_b_np},
nb_epoch=1, batch_size=4)
# test validation_split
out = model.fit([input_a_np, input_b_np],
[output_a_np, output_b_np],
nb_epoch=1, batch_size=4, validation_split=0.5)
out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
[output_a_np, output_b_np],
nb_epoch=1, batch_size=4, validation_split=0.5)
out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
{'dense_1': output_a_np, 'dropout': output_b_np},
nb_epoch=1, batch_size=4, validation_split=0.5)
# test validation data
out = model.fit([input_a_np, input_b_np],
[output_a_np, output_b_np],
nb_epoch=1, batch_size=4,
validation_data=([input_a_np, input_b_np], [output_a_np, output_b_np]))
out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
[output_a_np, output_b_np],
nb_epoch=1, batch_size=4, validation_split=0.5,
validation_data=({'input_a': input_a_np, 'input_b': input_b_np}, [output_a_np, output_b_np]))
out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
{'dense_1': output_a_np, 'dropout': output_b_np},
nb_epoch=1, batch_size=4, validation_split=0.5,
validation_data=({'input_a': input_a_np, 'input_b': input_b_np}, {'dense_1': output_a_np, 'dropout': output_b_np}))
# test_on_batch
out = model.test_on_batch([input_a_np, input_b_np],
[output_a_np, output_b_np])
out = model.test_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
[output_a_np, output_b_np])
out = model.test_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
{'dense_1': output_a_np, 'dropout': output_b_np})
# predict_on_batch
out = model.predict_on_batch([input_a_np, input_b_np])
out = model.predict_on_batch({'input_a': input_a_np, 'input_b': input_b_np})
# predict, evaluate
input_a_np = np.random.random((10, 3))
input_b_np = np.random.random((10, 3))
output_a_np = np.random.random((10, 4))
output_b_np = np.random.random((10, 3))
out = model.evaluate([input_a_np, input_b_np], [output_a_np, output_b_np], batch_size=4)
out = model.predict([input_a_np, input_b_np], batch_size=4)
# with sample_weight
input_a_np = np.random.random((10, 3))
input_b_np = np.random.random((10, 3))
output_a_np = np.random.random((10, 4))
output_b_np = np.random.random((10, 3))
sample_weight = [None, np.random.random((10,))]
out = model.train_on_batch([input_a_np, input_b_np],
[output_a_np, output_b_np],
sample_weight=sample_weight)
out = model.test_on_batch([input_a_np, input_b_np],
[output_a_np, output_b_np],
#.........这里部分代码省略.........
示例4: test_model_methods
# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import evaluate [as 别名]
def test_model_methods():
a = Input(shape=(3,), name='input_a')
b = Input(shape=(3,), name='input_b')
a_2 = Dense(4, name='dense_1')(a)
dp = Dropout(0.5, name='dropout')
b_2 = dp(b)
model = Model([a, b], [a_2, b_2])
optimizer = 'rmsprop'
loss = 'mse'
loss_weights = [1., 0.5]
input_a_np = np.random.random((10, 3))
input_b_np = np.random.random((10, 3))
input_a_df = pd.DataFrame(input_a_np)
input_b_df = pd.DataFrame(input_b_np)
output_a_np = np.random.random((10, 4))
output_b_np = np.random.random((10, 3))
output_a_df = pd.DataFrame(output_a_np)
output_b_df = pd.DataFrame(output_b_np)
# training/testing doesn't work before compiling.
with pytest.raises(RuntimeError):
model.train_on_batch([input_a_np, input_b_np], [output_a_np, output_b_np])
model.compile(optimizer, loss, metrics=[], loss_weights=loss_weights,
sample_weight_mode=None)
# test train_on_batch
out = model.train_on_batch([input_a_np, input_b_np],
[output_a_np, output_b_np])
out = model.train_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
[output_a_np, output_b_np])
out = model.train_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
{'dense_1': output_a_np, 'dropout': output_b_np})
out = model.train_on_batch([input_a_df, input_b_df],
[output_a_df, output_b_df])
# test fit
out = model.fit([input_a_np, input_b_np],
[output_a_np, output_b_np], epochs=1, batch_size=4)
out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
[output_a_np, output_b_np], epochs=1, batch_size=4)
out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
{'dense_1': output_a_np, 'dropout': output_b_np},
epochs=1, batch_size=4)
out = model.fit([input_a_df, input_b_df],
[output_a_df, output_b_df], epochs=1, batch_size=4)
# test validation_split
out = model.fit([input_a_np, input_b_np],
[output_a_np, output_b_np],
epochs=1, batch_size=4, validation_split=0.5)
out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
[output_a_np, output_b_np],
epochs=1, batch_size=4, validation_split=0.5)
# test validation data
out = model.fit([input_a_np, input_b_np],
[output_a_np, output_b_np],
epochs=1, batch_size=4,
validation_data=([input_a_np, input_b_np], [output_a_np, output_b_np]))
out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
[output_a_np, output_b_np],
epochs=1, batch_size=4, validation_split=0.5,
validation_data=({'input_a': input_a_np, 'input_b': input_b_np}, [output_a_np, output_b_np]))
out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
{'dense_1': output_a_np, 'dropout': output_b_np},
epochs=1, batch_size=4, validation_split=0.5,
validation_data=(
{'input_a': input_a_np, 'input_b': input_b_np},
{'dense_1': output_a_np, 'dropout': output_b_np}))
# test_on_batch
out = model.test_on_batch([input_a_np, input_b_np],
[output_a_np, output_b_np])
out = model.test_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
[output_a_np, output_b_np])
out = model.test_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
{'dense_1': output_a_np, 'dropout': output_b_np})
out = model.test_on_batch([input_a_df, input_b_df],
[output_a_df, output_b_df])
# predict_on_batch
out = model.predict_on_batch([input_a_np, input_b_np])
out = model.predict_on_batch({'input_a': input_a_np, 'input_b': input_b_np})
out = model.predict_on_batch([input_a_df, input_b_df])
# predict, evaluate
input_a_np = np.random.random((10, 3))
input_b_np = np.random.random((10, 3))
output_a_np = np.random.random((10, 4))
output_b_np = np.random.random((10, 3))
out = model.evaluate([input_a_np, input_b_np], [output_a_np, output_b_np], batch_size=4)
out = model.evaluate([input_a_df, input_b_df], [output_a_df, output_b_df], batch_size=4)
#.........这里部分代码省略.........
示例5: test_model_with_external_loss
# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import evaluate [as 别名]
def test_model_with_external_loss():
# None loss, only regularization loss.
a = Input(shape=(3,), name='input_a')
a_2 = Dense(4, name='dense_1',
kernel_regularizer='l1',
bias_regularizer='l2')(a)
dp = Dropout(0.5, name='dropout')
a_3 = dp(a_2)
model = Model(a, [a_2, a_3])
optimizer = 'rmsprop'
loss = None
model.compile(optimizer, loss, metrics=['mae'])
input_a_np = np.random.random((10, 3))
# test train_on_batch
out = model.train_on_batch(input_a_np, None)
out = model.test_on_batch(input_a_np, None)
# fit
out = model.fit(input_a_np, None)
# evaluate
out = model.evaluate(input_a_np, None)
# No dropout, external loss.
a = Input(shape=(3,), name='input_a')
a_2 = Dense(4, name='dense_1')(a)
a_3 = Dense(4, name='dense_2')(a)
model = Model(a, [a_2, a_3])
model.add_loss(K.mean(a_3 + a_2))
optimizer = 'rmsprop'
loss = None
model.compile(optimizer, loss, metrics=['mae'])
# test train_on_batch
out = model.train_on_batch(input_a_np, None)
out = model.test_on_batch(input_a_np, None)
# fit
out = model.fit(input_a_np, None)
# evaluate
out = model.evaluate(input_a_np, None)
# Test fit with no external data at all.
if K.backend() == 'tensorflow':
import tensorflow as tf
a = Input(tensor=tf.Variable(input_a_np, dtype=tf.float32))
a_2 = Dense(4, name='dense_1')(a)
a_2 = Dropout(0.5, name='dropout')(a_2)
model = Model(a, a_2)
model.add_loss(K.mean(a_2))
model.compile(optimizer='rmsprop',
loss=None,
metrics=['mean_squared_error'])
# test train_on_batch
out = model.train_on_batch(None, None)
out = model.test_on_batch(None, None)
out = model.predict_on_batch(None)
# test fit
with pytest.raises(ValueError):
out = model.fit(None, None, epochs=1, batch_size=10)
out = model.fit(None, None, epochs=1, steps_per_epoch=1)
# test fit with validation data
with pytest.raises(ValueError):
out = model.fit(None, None,
epochs=1,
steps_per_epoch=None,
validation_steps=2)
out = model.fit(None, None,
epochs=1,
steps_per_epoch=2,
validation_steps=2)
# test evaluate
with pytest.raises(ValueError):
out = model.evaluate(None, None, batch_size=10)
out = model.evaluate(None, None, steps=3)
# test predict
with pytest.raises(ValueError):
out = model.predict(None, batch_size=10)
out = model.predict(None, steps=3)
assert out.shape == (10 * 3, 4)
# Test multi-output model without external data.
a = Input(tensor=tf.Variable(input_a_np, dtype=tf.float32))
a_1 = Dense(4, name='dense_1')(a)
a_2 = Dropout(0.5, name='dropout')(a_1)
model = Model(a, [a_1, a_2])
model.add_loss(K.mean(a_2))
model.compile(optimizer='rmsprop',
loss=None,
metrics=['mean_squared_error'])
#.........这里部分代码省略.........
示例6: test_model_with_input_feed_tensor
# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import evaluate [as 别名]
def test_model_with_input_feed_tensor():
"""We test building a model with a TF variable as input.
We should be able to call fit, evaluate, predict,
by only passing them data for the placeholder inputs
in the model.
"""
import tensorflow as tf
input_a_np = np.random.random((10, 3))
input_b_np = np.random.random((10, 3))
output_a_np = np.random.random((10, 4))
output_b_np = np.random.random((10, 3))
a = Input(tensor=tf.Variable(input_a_np, dtype=tf.float32))
b = Input(shape=(3,), name='input_b')
a_2 = Dense(4, name='dense_1')(a)
dp = Dropout(0.5, name='dropout')
b_2 = dp(b)
model = Model([a, b], [a_2, b_2])
model.summary()
optimizer = 'rmsprop'
loss = 'mse'
loss_weights = [1., 0.5]
model.compile(optimizer, loss, metrics=['mean_squared_error'],
loss_weights=loss_weights,
sample_weight_mode=None)
# test train_on_batch
out = model.train_on_batch(input_b_np,
[output_a_np, output_b_np])
out = model.train_on_batch({'input_b': input_b_np},
[output_a_np, output_b_np])
out = model.test_on_batch({'input_b': input_b_np},
[output_a_np, output_b_np])
out = model.predict_on_batch({'input_b': input_b_np})
# test fit
out = model.fit({'input_b': input_b_np},
[output_a_np, output_b_np], epochs=1, batch_size=10)
out = model.fit(input_b_np,
[output_a_np, output_b_np], epochs=1, batch_size=10)
# test evaluate
out = model.evaluate({'input_b': input_b_np},
[output_a_np, output_b_np], batch_size=10)
out = model.evaluate(input_b_np,
[output_a_np, output_b_np], batch_size=10)
# test predict
out = model.predict({'input_b': input_b_np}, batch_size=10)
out = model.predict(input_b_np, batch_size=10)
assert len(out) == 2
# Now test a model with a single input
# i.e. we don't pass any data to fit the model.
a = Input(tensor=tf.Variable(input_a_np, dtype=tf.float32))
a_2 = Dense(4, name='dense_1')(a)
a_2 = Dropout(0.5, name='dropout')(a_2)
model = Model(a, a_2)
model.summary()
optimizer = 'rmsprop'
loss = 'mse'
model.compile(optimizer, loss, metrics=['mean_squared_error'])
# test train_on_batch
out = model.train_on_batch(None,
output_a_np)
out = model.train_on_batch(None,
output_a_np)
out = model.test_on_batch(None,
output_a_np)
out = model.predict_on_batch(None)
out = model.train_on_batch([],
output_a_np)
out = model.train_on_batch({},
output_a_np)
# test fit
out = model.fit(None,
output_a_np, epochs=1, batch_size=10)
out = model.fit(None,
output_a_np, epochs=1, batch_size=10)
# test evaluate
out = model.evaluate(None,
output_a_np, batch_size=10)
out = model.evaluate(None,
output_a_np, batch_size=10)
# test predict
out = model.predict(None, steps=3)
out = model.predict(None, steps=3)
assert out.shape == (10 * 3, 4)
# Same, without learning phase
#.........这里部分代码省略.........
示例7: test_pandas_dataframe
# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import evaluate [as 别名]
def test_pandas_dataframe():
input_a = Input(shape=(3,), name='input_a')
input_b = Input(shape=(3,), name='input_b')
x = Dense(4, name='dense_1')(input_a)
y = Dense(3, name='desne_2')(input_b)
model_1 = Model(inputs=input_a, outputs=x)
model_2 = Model(inputs=[input_a, input_b], outputs=[x, y])
optimizer = 'rmsprop'
loss = 'mse'
model_1.compile(optimizer=optimizer, loss=loss)
model_2.compile(optimizer=optimizer, loss=loss)
input_a_df = pd.DataFrame(np.random.random((10, 3)))
input_b_df = pd.DataFrame(np.random.random((10, 3)))
output_a_df = pd.DataFrame(np.random.random((10, 4)))
output_b_df = pd.DataFrame(np.random.random((10, 3)))
model_1.fit(input_a_df,
output_a_df)
model_2.fit([input_a_df, input_b_df],
[output_a_df, output_b_df])
model_1.fit([input_a_df],
[output_a_df])
model_1.fit({'input_a': input_a_df},
output_a_df)
model_2.fit({'input_a': input_a_df, 'input_b': input_b_df},
[output_a_df, output_b_df])
model_1.predict(input_a_df)
model_2.predict([input_a_df, input_b_df])
model_1.predict([input_a_df])
model_1.predict({'input_a': input_a_df})
model_2.predict({'input_a': input_a_df, 'input_b': input_b_df})
model_1.predict_on_batch(input_a_df)
model_2.predict_on_batch([input_a_df, input_b_df])
model_1.predict_on_batch([input_a_df])
model_1.predict_on_batch({'input_a': input_a_df})
model_2.predict_on_batch({'input_a': input_a_df, 'input_b': input_b_df})
model_1.evaluate(input_a_df,
output_a_df)
model_2.evaluate([input_a_df, input_b_df],
[output_a_df, output_b_df])
model_1.evaluate([input_a_df],
[output_a_df])
model_1.evaluate({'input_a': input_a_df},
output_a_df)
model_2.evaluate({'input_a': input_a_df, 'input_b': input_b_df},
[output_a_df, output_b_df])
model_1.train_on_batch(input_a_df,
output_a_df)
model_2.train_on_batch([input_a_df, input_b_df],
[output_a_df, output_b_df])
model_1.train_on_batch([input_a_df],
[output_a_df])
model_1.train_on_batch({'input_a': input_a_df},
output_a_df)
model_2.train_on_batch({'input_a': input_a_df, 'input_b': input_b_df},
[output_a_df, output_b_df])
model_1.test_on_batch(input_a_df,
output_a_df)
model_2.test_on_batch([input_a_df, input_b_df],
[output_a_df, output_b_df])
model_1.test_on_batch([input_a_df],
[output_a_df])
model_1.test_on_batch({'input_a': input_a_df},
output_a_df)
model_2.test_on_batch({'input_a': input_a_df, 'input_b': input_b_df},
[output_a_df, output_b_df])
示例8: test_model_methods
# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import evaluate [as 别名]
def test_model_methods():
a = Input(shape=(3,), name='input_a')
b = Input(shape=(3,), name='input_b')
a_2 = Dense(4, name='dense_1')(a)
dp = Dropout(0.5, name='dropout')
b_2 = dp(b)
model = Model([a, b], [a_2, b_2])
optimizer = 'rmsprop'
loss = 'mse'
loss_weights = [1., 0.5]
model.compile(optimizer, loss, metrics=[], loss_weights=loss_weights,
sample_weight_mode=None)
input_a_np = np.random.random((10, 3))
input_b_np = np.random.random((10, 3))
output_a_np = np.random.random((10, 4))
output_b_np = np.random.random((10, 3))
# test train_on_batch
out = model.train_on_batch([input_a_np, input_b_np],
[output_a_np, output_b_np])
out = model.train_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
[output_a_np, output_b_np])
out = model.train_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
{'dense_1': output_a_np, 'dropout': output_b_np})
# test fit
out = model.fit([input_a_np, input_b_np],
[output_a_np, output_b_np], nb_epoch=1, batch_size=4)
out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
[output_a_np, output_b_np], nb_epoch=1, batch_size=4)
out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
{'dense_1': output_a_np, 'dropout': output_b_np},
nb_epoch=1, batch_size=4)
# test validation_split
out = model.fit([input_a_np, input_b_np],
[output_a_np, output_b_np],
nb_epoch=1, batch_size=4, validation_split=0.5)
out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
[output_a_np, output_b_np],
nb_epoch=1, batch_size=4, validation_split=0.5)
out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
{'dense_1': output_a_np, 'dropout': output_b_np},
nb_epoch=1, batch_size=4, validation_split=0.5)
# test validation data
out = model.fit([input_a_np, input_b_np],
[output_a_np, output_b_np],
nb_epoch=1, batch_size=4,
validation_data=([input_a_np, input_b_np], [output_a_np, output_b_np]))
out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
[output_a_np, output_b_np],
nb_epoch=1, batch_size=4, validation_split=0.5,
validation_data=({'input_a': input_a_np, 'input_b': input_b_np}, [output_a_np, output_b_np]))
out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
{'dense_1': output_a_np, 'dropout': output_b_np},
nb_epoch=1, batch_size=4, validation_split=0.5,
validation_data=({'input_a': input_a_np, 'input_b': input_b_np}, {'dense_1': output_a_np, 'dropout': output_b_np}))
# test_on_batch
out = model.test_on_batch([input_a_np, input_b_np],
[output_a_np, output_b_np])
out = model.test_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
[output_a_np, output_b_np])
out = model.test_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
{'dense_1': output_a_np, 'dropout': output_b_np})
# predict_on_batch
out = model.predict_on_batch([input_a_np, input_b_np])
out = model.predict_on_batch({'input_a': input_a_np, 'input_b': input_b_np})
# predict, evaluate
input_a_np = np.random.random((10, 3))
input_b_np = np.random.random((10, 3))
output_a_np = np.random.random((10, 4))
output_b_np = np.random.random((10, 3))
out = model.evaluate([input_a_np, input_b_np], [output_a_np, output_b_np], batch_size=4)
out = model.predict([input_a_np, input_b_np], batch_size=4)
# with sample_weight
input_a_np = np.random.random((10, 3))
input_b_np = np.random.random((10, 3))
output_a_np = np.random.random((10, 4))
output_b_np = np.random.random((10, 3))
sample_weight = [None, np.random.random((10,))]
out = model.train_on_batch([input_a_np, input_b_np],
[output_a_np, output_b_np],
sample_weight=sample_weight)
out = model.test_on_batch([input_a_np, input_b_np],
[output_a_np, output_b_np],
#.........这里部分代码省略.........
示例9: test_model_methods
# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import evaluate [as 别名]
def test_model_methods():
a = Input(shape=(3,), name='input_a')
b = Input(shape=(3,), name='input_b')
a_2 = Dense(4, name='dense_1')(a)
dp = Dropout(0.5, name='dropout')
b_2 = dp(b)
model = Model([a, b], [a_2, b_2])
optimizer = 'rmsprop'
loss = 'mse'
loss_weights = [1., 0.5]
input_a_np = np.random.random((10, 3))
input_b_np = np.random.random((10, 3))
output_a_np = np.random.random((10, 4))
output_b_np = np.random.random((10, 3))
# training/testing doesn't work before compiling.
with pytest.raises(RuntimeError):
model.train_on_batch([input_a_np, input_b_np], [output_a_np, output_b_np])
model.compile(optimizer, loss, metrics=[], loss_weights=loss_weights,
sample_weight_mode=None)
# test train_on_batch
out = model.train_on_batch([input_a_np, input_b_np],
[output_a_np, output_b_np])
out = model.train_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
[output_a_np, output_b_np])
out = model.train_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
{'dense_1': output_a_np, 'dropout': output_b_np})
# test fit
out = model.fit([input_a_np, input_b_np],
[output_a_np, output_b_np], epochs=1, batch_size=4)
out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
[output_a_np, output_b_np], epochs=1, batch_size=4)
out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
{'dense_1': output_a_np, 'dropout': output_b_np},
epochs=1, batch_size=4)
# test validation_split
out = model.fit([input_a_np, input_b_np],
[output_a_np, output_b_np],
epochs=1, batch_size=4, validation_split=0.5)
out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
[output_a_np, output_b_np],
epochs=1, batch_size=4, validation_split=0.5)
# test validation data
out = model.fit([input_a_np, input_b_np],
[output_a_np, output_b_np],
epochs=1, batch_size=4,
validation_data=([input_a_np, input_b_np], [output_a_np, output_b_np]))
out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
[output_a_np, output_b_np],
epochs=1, batch_size=4, validation_split=0.5,
validation_data=({'input_a': input_a_np, 'input_b': input_b_np}, [output_a_np, output_b_np]))
out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
{'dense_1': output_a_np, 'dropout': output_b_np},
epochs=1, batch_size=4, validation_split=0.5,
validation_data=(
{'input_a': input_a_np, 'input_b': input_b_np},
{'dense_1': output_a_np, 'dropout': output_b_np}))
# test_on_batch
out = model.test_on_batch([input_a_np, input_b_np],
[output_a_np, output_b_np])
out = model.test_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
[output_a_np, output_b_np])
out = model.test_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
{'dense_1': output_a_np, 'dropout': output_b_np})
# predict_on_batch
out = model.predict_on_batch([input_a_np, input_b_np])
out = model.predict_on_batch({'input_a': input_a_np, 'input_b': input_b_np})
# predict, evaluate
input_a_np = np.random.random((10, 3))
input_b_np = np.random.random((10, 3))
output_a_np = np.random.random((10, 4))
output_b_np = np.random.random((10, 3))
out = model.evaluate([input_a_np, input_b_np], [output_a_np, output_b_np], batch_size=4)
out = model.predict([input_a_np, input_b_np], batch_size=4)
# with sample_weight
input_a_np = np.random.random((10, 3))
input_b_np = np.random.random((10, 3))
output_a_np = np.random.random((10, 4))
output_b_np = np.random.random((10, 3))
sample_weight = [None, np.random.random((10,))]
out = model.train_on_batch([input_a_np, input_b_np],
[output_a_np, output_b_np],
#.........这里部分代码省略.........
示例10: PolicyValueNet
# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import evaluate [as 别名]
class PolicyValueNet():
"""policy-value network """
def __init__(self, board_width, board_height, model_file=None):
self.board_width = board_width
self.board_height = board_height
self.l2_const = 1e-4 # coef of l2 penalty
self.create_policy_value_net()
self._loss_train_op()
if model_file:
net_params = pickle.load(open(model_file, 'rb'))
self.model.set_weights(net_params)
def create_policy_value_net(self):
"""create the policy value network """
in_x = network = Input((4, self.board_width, self.board_height))
# conv layers
network = Conv2D(filters=32, kernel_size=(3, 3), padding="same", data_format="channels_first", activation="relu", kernel_regularizer=l2(self.l2_const))(network)
network = Conv2D(filters=64, kernel_size=(3, 3), padding="same", data_format="channels_first", activation="relu", kernel_regularizer=l2(self.l2_const))(network)
network = Conv2D(filters=128, kernel_size=(3, 3), padding="same", data_format="channels_first", activation="relu", kernel_regularizer=l2(self.l2_const))(network)
# action policy layers
policy_net = Conv2D(filters=4, kernel_size=(1, 1), data_format="channels_first", activation="relu", kernel_regularizer=l2(self.l2_const))(network)
policy_net = Flatten()(policy_net)
self.policy_net = Dense(self.board_width*self.board_height, activation="softmax", kernel_regularizer=l2(self.l2_const))(policy_net)
# state value layers
value_net = Conv2D(filters=2, kernel_size=(1, 1), data_format="channels_first", activation="relu", kernel_regularizer=l2(self.l2_const))(network)
value_net = Flatten()(value_net)
value_net = Dense(64, kernel_regularizer=l2(self.l2_const))(value_net)
self.value_net = Dense(1, activation="tanh", kernel_regularizer=l2(self.l2_const))(value_net)
self.model = Model(in_x, [self.policy_net, self.value_net])
def policy_value(state_input):
state_input_union = np.array(state_input)
results = self.model.predict_on_batch(state_input_union)
return results
self.policy_value = policy_value
def policy_value_fn(self, board):
"""
input: board
output: a list of (action, probability) tuples for each available action and the score of the board state
"""
legal_positions = board.availables
current_state = board.current_state()
act_probs, value = self.policy_value(current_state.reshape(-1, 4, self.board_width, self.board_height))
act_probs = zip(legal_positions, act_probs.flatten()[legal_positions])
return act_probs, value[0][0]
def _loss_train_op(self):
"""
Three loss terms:
loss = (z - v)^2 + pi^T * log(p) + c||theta||^2
"""
# get the train op
opt = Adam()
losses = ['categorical_crossentropy', 'mean_squared_error']
self.model.compile(optimizer=opt, loss=losses)
def self_entropy(probs):
return -np.mean(np.sum(probs * np.log(probs + 1e-10), axis=1))
def train_step(state_input, mcts_probs, winner, learning_rate):
state_input_union = np.array(state_input)
mcts_probs_union = np.array(mcts_probs)
winner_union = np.array(winner)
loss = self.model.evaluate(state_input_union, [mcts_probs_union, winner_union], batch_size=len(state_input), verbose=0)
action_probs, _ = self.model.predict_on_batch(state_input_union)
entropy = self_entropy(action_probs)
K.set_value(self.model.optimizer.lr, learning_rate)
self.model.fit(state_input_union, [mcts_probs_union, winner_union], batch_size=len(state_input), verbose=0)
return loss[0], entropy
self.train_step = train_step
def get_policy_param(self):
net_params = self.model.get_weights()
return net_params
def save_model(self, model_file):
""" save model params to file """
net_params = self.get_policy_param()
pickle.dump(net_params, open(model_file, 'wb'), protocol=2)