本文整理汇总了Python中keras.engine.training.Model.save_weights方法的典型用法代码示例。如果您正苦于以下问题:Python Model.save_weights方法的具体用法?Python Model.save_weights怎么用?Python Model.save_weights使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.engine.training.Model
的用法示例。
在下文中一共展示了Model.save_weights方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: FinancialTimeSeriesAnalysisModel
# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import save_weights [as 别名]
class FinancialTimeSeriesAnalysisModel(object):
model = None
def __init__(self, nb_time_step, dim_data, batch_size=1, model_path=None):
self.model_path = model_path
self.model_path = model_path
self.batch_size = batch_size
self.size_of_input_data_dim = dim_data
self.size_of_input_timesteps = nb_time_step
self.build()
self.weight_loaded = False
if model_path is not None:
self.load_weights()
def build(self):
dim_data = self.size_of_input_data_dim
nb_time_step = self.size_of_input_timesteps
financial_time_series_input = Input(shape=(nb_time_step, dim_data), name='x1')
lstm_layer_1 = LSTM(output_dim=nb_hidden_units, dropout_U=dropout, dropout_W=dropout,
W_regularizer=l2(l2_norm_alpha), b_regularizer=l2(l2_norm_alpha), activation='tanh',
return_sequences=True, name='lstm_layer1')
lstm_layer_21 = LSTM(output_dim=nb_hidden_units, dropout_U=dropout, dropout_W=dropout,
W_regularizer=l2(l2_norm_alpha), b_regularizer=l2(l2_norm_alpha), activation='tanh',
return_sequences=True, name='lstm_layer2_loss1')
lstm_layer_22 = LSTM(output_dim=nb_hidden_units, dropout_U=dropout, dropout_W=dropout,
W_regularizer=l2(l2_norm_alpha), b_regularizer=l2(l2_norm_alpha), activation='tanh',
return_sequences=True, name='lstm_layer2_loss2')
lstm_layer_23 = LSTM(output_dim=nb_hidden_units, dropout_U=dropout, dropout_W=dropout,
W_regularizer=l2(l2_norm_alpha), b_regularizer=l2(l2_norm_alpha), activation='tanh',
return_sequences=True, name='lstm_layer2_loss3')
lstm_layer_24 = LSTM(output_dim=nb_hidden_units, dropout_U=dropout, dropout_W=dropout,
W_regularizer=l2(l2_norm_alpha), b_regularizer=l2(l2_norm_alpha), activation='tanh',
return_sequences=True, name='lstm_layer2_loss4')
lstm_layer_25 = LSTM(output_dim=nb_hidden_units, dropout_U=dropout, dropout_W=dropout,
W_regularizer=l2(l2_norm_alpha), b_regularizer=l2(l2_norm_alpha), activation='tanh',
return_sequences=True, name='lstm_layer2_loss5')
h1 = lstm_layer_1(financial_time_series_input)
h21 = lstm_layer_21(h1)
h22 = lstm_layer_22(h1)
h23 = lstm_layer_23(h1)
h24 = lstm_layer_24(h1)
h25 = lstm_layer_25(h1)
time_series_predictions1 = TimeDistributed(Dense(1), name="p1")(h21) # custom 1
time_series_predictions2 = TimeDistributed(Dense(1), name="p2")(h22) # custom 2
time_series_predictions3 = TimeDistributed(Dense(1), name="p3")(h23) # mse
time_series_predictions4 = TimeDistributed(Dense(1, activation='sigmoid'), name="p4")(h24) # logloss
time_series_predictions5 = TimeDistributed(Dense(nb_labels, activation='softmax'), name="p5")(h25) # cross
self.model = Model(input=financial_time_series_input,
output=[time_series_predictions1, time_series_predictions2,
time_series_predictions3, time_series_predictions4,
time_series_predictions5],
name="multi-task deep rnn for financial time series forecasting")
plot(self.model, to_file='model.png')
def reset(self):
for l in self.model.layers:
if type(l) is LSTM:
l.reset_status()
def compile_model(self, lr=0.0001, arg_weight=1.):
optimizer = Adam(lr=lr)
loss = [custom_objective1, custom_objective2, 'mse', 'binary_crossentropy', 'categorical_crossentropy']
self.model.compile(optimizer=optimizer, loss=loss)
def fit_model(self, X, y, y_label, epoch=300):
early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=0)
self.model.fit(X, [y]*3 + [y > 0] + [y_label], batch_size=self.batch_size, nb_epoch=epoch, validation_split=0.2,
shuffle=True, callbacks=[early_stopping])
def save(self):
self.model.save_weights(self.model_path, overwrite=True)
def load_weights(self):
if os.path.exists(self.model_path):
self.model.load_weights(self.model_path)
self.weight_loaded = True
def print_weights(self, weights=None, detail=False):
weights = weights or self.model.get_weights()
for w in weights:
print("w%s: sum(w)=%s, ave(w)=%s" % (w.shape, np.sum(w), np.average(w)))
if detail:
for w in weights:
print("%s: %s" % (w.shape, w))
def model_eval(self, X, y):
y_hat = self.model.predict(X, batch_size=1)[0]
count_true = 0
count_all = y.shape[1]
for i in range(y.shape[1]):
count_true = count_true + 1 if y[0,i,0]*y_hat[0,i,0]>0 else count_true
print(y[0,i,0],y_hat[0,i,0])
print(count_all,count_true)
示例2: __init__
# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import save_weights [as 别名]
class CChessModel:
def __init__(self, config: Config):
self.config = config
self.model = None # type: Model
self.digest = None
self.n_labels = len(ActionLabelsRed)
self.graph = None
self.api = None
def build(self):
mc = self.config.model
in_x = x = Input((14, 10, 9)) # 14 x 10 x 9
# (batch, channels, height, width)
x = Conv2D(filters=mc.cnn_filter_num, kernel_size=mc.cnn_first_filter_size, padding="same",
data_format="channels_first", use_bias=False, kernel_regularizer=l2(mc.l2_reg),
name="input_conv-"+str(mc.cnn_first_filter_size)+"-"+str(mc.cnn_filter_num))(x)
x = BatchNormalization(axis=1, name="input_batchnorm")(x)
x = Activation("relu", name="input_relu")(x)
for i in range(mc.res_layer_num):
x = self._build_residual_block(x, i + 1)
res_out = x
# for policy output
x = Conv2D(filters=2, kernel_size=1, data_format="channels_first", use_bias=False,
kernel_regularizer=l2(mc.l2_reg), name="policy_conv-1-2")(res_out)
x = BatchNormalization(axis=1, name="policy_batchnorm")(x)
x = Activation("relu", name="policy_relu")(x)
x = Flatten(name="policy_flatten")(x)
policy_out = Dense(self.n_labels, kernel_regularizer=l2(mc.l2_reg), activation="softmax", name="policy_out")(x)
# for value output
x = Conv2D(filters=4, kernel_size=1, data_format="channels_first", use_bias=False,
kernel_regularizer=l2(mc.l2_reg), name="value_conv-1-4")(res_out)
x = BatchNormalization(axis=1, name="value_batchnorm")(x)
x = Activation("relu",name="value_relu")(x)
x = Flatten(name="value_flatten")(x)
x = Dense(mc.value_fc_size, kernel_regularizer=l2(mc.l2_reg), activation="relu", name="value_dense")(x)
value_out = Dense(1, kernel_regularizer=l2(mc.l2_reg), activation="tanh", name="value_out")(x)
self.model = Model(in_x, [policy_out, value_out], name="cchess_model")
self.graph = tf.get_default_graph()
def _build_residual_block(self, x, index):
mc = self.config.model
in_x = x
res_name = "res" + str(index)
x = Conv2D(filters=mc.cnn_filter_num, kernel_size=mc.cnn_filter_size, padding="same",
data_format="channels_first", use_bias=False, kernel_regularizer=l2(mc.l2_reg),
name=res_name+"_conv1-"+str(mc.cnn_filter_size)+"-"+str(mc.cnn_filter_num))(x)
x = BatchNormalization(axis=1, name=res_name+"_batchnorm1")(x)
x = Activation("relu",name=res_name+"_relu1")(x)
x = Conv2D(filters=mc.cnn_filter_num, kernel_size=mc.cnn_filter_size, padding="same",
data_format="channels_first", use_bias=False, kernel_regularizer=l2(mc.l2_reg),
name=res_name+"_conv2-"+str(mc.cnn_filter_size)+"-"+str(mc.cnn_filter_num))(x)
x = BatchNormalization(axis=1, name="res"+str(index)+"_batchnorm2")(x)
x = Add(name=res_name+"_add")([in_x, x])
x = Activation("relu", name=res_name+"_relu2")(x)
return x
@staticmethod
def fetch_digest(weight_path):
if os.path.exists(weight_path):
m = hashlib.sha256()
with open(weight_path, "rb") as f:
m.update(f.read())
return m.hexdigest()
def load(self, config_path, weight_path):
if os.path.exists(config_path) and os.path.exists(weight_path):
logger.debug(f"loading model from {config_path}")
with open(config_path, "rt") as f:
self.model = Model.from_config(json.load(f))
self.model.load_weights(weight_path)
self.digest = self.fetch_digest(weight_path)
self.graph = tf.get_default_graph()
logger.debug(f"loaded model digest = {self.digest}")
return True
else:
logger.debug(f"model files does not exist at {config_path} and {weight_path}")
return False
def save(self, config_path, weight_path):
logger.debug(f"save model to {config_path}")
with open(config_path, "wt") as f:
json.dump(self.model.get_config(), f)
self.model.save_weights(weight_path)
self.digest = self.fetch_digest(weight_path)
logger.debug(f"saved model digest {self.digest}")
def get_pipes(self, num=1, api=None, need_reload=True):
if self.api is None:
self.api = CChessModelAPI(self.config, self)
self.api.start()
return self.api.get_pipe(need_reload)
#.........这里部分代码省略.........
示例3: FinancialNewsAnalysisModel
# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import save_weights [as 别名]
class FinancialNewsAnalysisModel(object):
model = None
def __init__(self, nb_time_step, dim_data, batch_size=1, model_path=None):
self.model_path = model_path
self.model_path = model_path
self.batch_size = batch_size
self.size_of_input_data_dim = dim_data
self.size_of_input_timesteps = nb_time_step
self.build()
self.weight_loaded = False
if model_path is not None:
self.load_weights()
def build(self):
dim_data = self.size_of_input_data_dim
nb_time_step = self.size_of_input_timesteps
news_input = Input(shape=(nb_time_step, dim_data))
lstm = LSTM(output_dim=nb_hidden_units, dropout_U=dropout, dropout_W=dropout,
W_regularizer=l2(l2_norm_alpha), b_regularizer=l2(l2_norm_alpha), activation='tanh')
bi_lstm = Bidirectional(lstm, input_shape=(nb_time_step, dim_data), merge_mode='concat')
all_news_rep = bi_lstm(news_input)
news_predictions = Dense(1, activation='linear')(all_news_rep)
self.model = Model(news_input, news_predictions, name="deep rnn for financial news analysis")
def reset(self):
for l in self.model.layers:
if type(l) is LSTM:
l.reset_status()
def compile_model(self, lr=0.0001, loss_weights=0.1):
optimizer = Adam(lr=lr)
loss = 'mse'
# loss = custom_objective
self.model.compile(optimizer=optimizer, loss=loss)
#metrics=['mse'])
plot(self.model, to_file='model.png')
def fit_model(self, X, y, X_val=None, y_val=None, epoch=500):
early_stopping = EarlyStopping(monitor='val_loss', patience=100, verbose=0)
if X_val is None:
self.model.fit(X, y, batch_size=self.batch_size, nb_epoch=epoch, validation_split=0.2,
shuffle=True, callbacks=[early_stopping])
else:
self.model.fit(X, y, batch_size=self.batch_size, nb_epoch=epoch, validation_data=(X_val, y_val),
shuffle=True, callbacks=[early_stopping])
def save(self):
self.model.save_weights(self.model_path, overwrite=True)
def load_weights(self):
if os.path.exists(self.model_path):
self.model.load_weights(self.model_path)
self.weight_loaded = True
def print_weights(self, weights=None, detail=False):
weights = weights or self.model.get_weights()
for w in weights:
print("w%s: sum(w)=%s, ave(w)=%s" % (w.shape, np.sum(w), np.average(w)))
if detail:
for w in weights:
print("%s: %s" % (w.shape, w))
def model_eval(self, X, y):
y_hat = self.model.predict(X, batch_size=1)
count_true = 0
count_all = y.shape[0]
for i in range(y.shape[0]):
count_true = count_true + 1 if y[i,0]*y_hat[i,0]>0 else count_true
print y[i,0],y_hat[i,0]
print count_all,count_true
示例4: AdditionNPIModel
# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import save_weights [as 别名]
#.........这里部分代码省略.........
print("training f_enc")
f_add0 = Sequential(name='f_add0')
f_add0.add(self.f_enc)
f_add0.add(Dense(FIELD_DEPTH))
f_add0.add(Activation('softmax', name='softmax_add0'))
f_add1 = Sequential(name='f_add1')
f_add1.add(self.f_enc)
f_add1.add(Dense(FIELD_DEPTH))
f_add1.add(Activation('softmax', name='softmax_add1'))
env_model = Model(self.f_enc.inputs, [f_add0.output, f_add1.output], name="env_model")
env_model.compile(optimizer='adam', loss=['categorical_crossentropy']*2)
for ep in range(epoch):
losses = []
for idx, steps_dict in enumerate(steps_list):
prev = None
for step in steps_dict['steps']:
x = self.convert_input(step.input)[:2]
env_values = step.input.env.reshape((4, -1))
in1 = np.clip(env_values[0].argmax() - 1, 0, 9)
in2 = np.clip(env_values[1].argmax() - 1, 0, 9)
carry = np.clip(env_values[2].argmax() - 1, 0, 9)
y_num = in1 + in2 + carry
now = (in1, in2, carry)
if prev == now:
continue
prev = now
y0 = to_one_hot_array((y_num % 10)+1, FIELD_DEPTH)
y1 = to_one_hot_array((y_num // 10)+1, FIELD_DEPTH)
y = [yy.reshape((self.batch_size, -1)) for yy in [y0, y1]]
loss = env_model.train_on_batch(x, y)
losses.append(loss)
print("ep %3d: loss=%s" % (ep, np.average(losses)))
def question_test(self, addition_env, npi_runner, question):
addition_env.reset()
self.reset()
try:
run_npi(addition_env, npi_runner, self.program_set.ADD, question)
if question['correct']:
return True
except StopIteration:
pass
return False
def convert_input(self, p_in: StepInput):
x_pg = np.array((p_in.program.program_id,))
x = [xx.reshape((self.batch_size, -1)) for xx in (p_in.env, p_in.arguments.values, x_pg)]
return x
def convert_output(self, p_out: StepOutput):
y = [np.array((p_out.r,))]
weights = [[1.]]
if p_out.program:
arg_values = p_out.arguments.values
arg_num = len(p_out.program.args or [])
y += [p_out.program.to_one_hot(PROGRAM_VEC_SIZE)]
weights += [[1.]]
else:
arg_values = IntegerArguments().values
arg_num = 0
y += [np.zeros((PROGRAM_VEC_SIZE, ))]
weights += [[1e-10]]
for v in arg_values: # split by each args
y += [v]
weights += [[1.]] * arg_num + [[1e-10]] * (len(arg_values) - arg_num)
weights = [np.array(w) for w in weights]
return [yy.reshape((self.batch_size, -1)) for yy in y], weights
def step(self, env_observation: np.ndarray, pg: Program, arguments: IntegerArguments) -> StepOutput:
x = self.convert_input(StepInput(env_observation, pg, arguments))
results = self.model.predict(x, batch_size=1) # if batch_size==1, returns single row
r, pg_one_hot, arg_values = results[0], results[1], results[2:]
program = self.program_set.get(pg_one_hot.argmax())
ret = StepOutput(r, program, IntegerArguments(values=np.stack(arg_values)))
return ret
def save(self):
self.model.save_weights(self.model_path, overwrite=True)
def load_weights(self):
if os.path.exists(self.model_path):
self.model.load_weights(self.model_path)
self.weight_loaded = True
def print_weights(self, weights=None, detail=False):
weights = weights or self.model.get_weights()
for w in weights:
print("w%s: sum(w)=%s, ave(w)=%s" % (w.shape, np.sum(w), np.average(w)))
if detail:
for w in weights:
print("%s: %s" % (w.shape, w))
@staticmethod
def size_of_env_observation():
return FIELD_ROW * FIELD_DEPTH