当前位置: 首页>>代码示例>>Python>>正文


Python Model.evaluate_generator方法代码示例

本文整理汇总了Python中keras.engine.training.Model.evaluate_generator方法的典型用法代码示例。如果您正苦于以下问题:Python Model.evaluate_generator方法的具体用法?Python Model.evaluate_generator怎么用?Python Model.evaluate_generator使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.engine.training.Model的用法示例。


在下文中一共展示了Model.evaluate_generator方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_model_methods

# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import evaluate_generator [as 别名]

#.........这里部分代码省略.........
            yield ([np.random.random((batch_sz, 3)), np.random.random((batch_sz, 3))],
                   [np.random.random((batch_sz, 4)), np.random.random((batch_sz, 3))])

    out = model.fit_generator(gen_data(4), steps_per_epoch=3, epochs=5,
                              initial_epoch=2, callbacks=[tracker_cb])
    assert trained_epochs == [2, 3, 4]

    # test with a custom metric function
    def mse(y_true, y_pred):
        return K.mean(K.pow(y_true - y_pred, 2))

    model.compile(optimizer, loss, metrics=[mse],
                  sample_weight_mode=None)

    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    out_len = 1 + 2 * (1 + 1)  # total loss + 2 outputs * (loss + metric)
    assert len(out) == out_len
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    assert len(out) == out_len

    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    out = model.fit([input_a_np, input_b_np], [output_a_np, output_b_np], batch_size=4, epochs=1)
    out = model.evaluate([input_a_np, input_b_np], [output_a_np, output_b_np], batch_size=4)
    out = model.predict([input_a_np, input_b_np], batch_size=4)

    # enable verbose for evaluate_generator
    out = model.evaluate_generator(gen_data(4), steps=3, verbose=1)

    # empty batch
    with pytest.raises(ValueError):
        def gen_data():
            while True:
                yield (np.asarray([]), np.asarray([]))
        out = model.evaluate_generator(gen_data(), steps=1)

    # x is not a list of numpy arrays.
    with pytest.raises(ValueError):
        out = model.predict([None])

    # x does not match _feed_input_names.
    with pytest.raises(ValueError):
        out = model.predict([input_a_np, None, input_b_np])
    with pytest.raises(ValueError):
        out = model.predict([None, input_a_np, input_b_np])

    # all input/output/weight arrays should have the same number of samples.
    with pytest.raises(ValueError):
        out = model.train_on_batch([input_a_np, input_b_np[:2]],
                                   [output_a_np, output_b_np],
                                   sample_weight=sample_weight)
    with pytest.raises(ValueError):
        out = model.train_on_batch([input_a_np, input_b_np],
                                   [output_a_np, output_b_np[:2]],
                                   sample_weight=sample_weight)
    with pytest.raises(ValueError):
        out = model.train_on_batch([input_a_np, input_b_np],
                                   [output_a_np, output_b_np],
                                   sample_weight=[sample_weight[1], sample_weight[1][:2]])
开发者ID:Dapid,项目名称:keras,代码行数:69,代码来源:test_training.py

示例2: test_model_methods

# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import evaluate_generator [as 别名]

#.........这里部分代码省略.........
                              initial_epoch=2, callbacks=[tracker_cb])
    assert trained_epochs == [2, 3, 4]

    # test with a custom metric function
    def mse(y_true, y_pred):
        return K.mean(K.pow(y_true - y_pred, 2))

    model.compile(optimizer, loss, metrics=[mse],
                  sample_weight_mode=None)

    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    out_len = 1 + 2 * (1 + 1)  # total loss + 2 outputs * (loss + metric)
    assert len(out) == out_len
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    assert len(out) == out_len

    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    out = model.fit([input_a_np, input_b_np], [output_a_np, output_b_np], batch_size=4, epochs=1)
    out = model.evaluate([input_a_np, input_b_np], [output_a_np, output_b_np], batch_size=4)
    out = model.predict([input_a_np, input_b_np], batch_size=4)

    # empty batch
    with pytest.raises(ValueError):
        def gen_data():
            while True:
                yield (np.asarray([]), np.asarray([]))
        out = model.evaluate_generator(gen_data(), steps=1)

    # x is not a list of numpy arrays.
    with pytest.raises(ValueError):
        out = model.predict([None])

    # x does not match _feed_input_names.
    with pytest.raises(ValueError):
        out = model.predict([input_a_np, None, input_b_np])
    with pytest.raises(ValueError):
        out = model.predict([None, input_a_np, input_b_np])

    # all input/output/weight arrays should have the same number of samples.
    with pytest.raises(ValueError):
        out = model.train_on_batch([input_a_np, input_b_np[:2]],
                                   [output_a_np, output_b_np],
                                   sample_weight=sample_weight)
    with pytest.raises(ValueError):
        out = model.train_on_batch([input_a_np, input_b_np],
                                   [output_a_np, output_b_np[:2]],
                                   sample_weight=sample_weight)
    with pytest.raises(ValueError):
        out = model.train_on_batch([input_a_np, input_b_np],
                                   [output_a_np, output_b_np],
                                   sample_weight=[sample_weight[1], sample_weight[1][:2]])

    # `sample_weight` is neither a dict nor a list.
    with pytest.raises(TypeError):
        out = model.train_on_batch([input_a_np, input_b_np],
                                   [output_a_np, output_b_np],
                                   sample_weight=tuple(sample_weight))

    # `validation_data` is neither a tuple nor a triple.
开发者ID:pkainz,项目名称:keras,代码行数:70,代码来源:test_training.py

示例3: test_model_with_external_loss

# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import evaluate_generator [as 别名]
def test_model_with_external_loss():
    # None loss, only regularization loss.
    a = Input(shape=(3,), name='input_a')
    a_2 = Dense(4, name='dense_1',
                kernel_regularizer='l1',
                bias_regularizer='l2')(a)
    dp = Dropout(0.5, name='dropout')
    a_3 = dp(a_2)

    model = Model(a, [a_2, a_3])

    optimizer = 'rmsprop'
    loss = None
    model.compile(optimizer, loss, metrics=['mae'])

    input_a_np = np.random.random((10, 3))

    # test train_on_batch
    out = model.train_on_batch(input_a_np, None)
    out = model.test_on_batch(input_a_np, None)
    # fit
    out = model.fit(input_a_np, None)
    # evaluate
    out = model.evaluate(input_a_np, None)

    # No dropout, external loss.
    a = Input(shape=(3,), name='input_a')
    a_2 = Dense(4, name='dense_1')(a)
    a_3 = Dense(4, name='dense_2')(a)

    model = Model(a, [a_2, a_3])
    model.add_loss(K.mean(a_3 + a_2))

    optimizer = 'rmsprop'
    loss = None
    model.compile(optimizer, loss, metrics=['mae'])

    # test train_on_batch
    out = model.train_on_batch(input_a_np, None)
    out = model.test_on_batch(input_a_np, None)
    # fit
    out = model.fit(input_a_np, None)
    # evaluate
    out = model.evaluate(input_a_np, None)

    # Test fit with no external data at all.
    if K.backend() == 'tensorflow':
        import tensorflow as tf

        a = Input(tensor=tf.Variable(input_a_np, dtype=tf.float32))
        a_2 = Dense(4, name='dense_1')(a)
        a_2 = Dropout(0.5, name='dropout')(a_2)
        model = Model(a, a_2)
        model.add_loss(K.mean(a_2))

        model.compile(optimizer='rmsprop',
                      loss=None,
                      metrics=['mean_squared_error'])

        # test train_on_batch
        out = model.train_on_batch(None, None)
        out = model.test_on_batch(None, None)
        out = model.predict_on_batch(None)

        # test fit
        with pytest.raises(ValueError):
            out = model.fit(None, None, epochs=1, batch_size=10)
        out = model.fit(None, None, epochs=1, steps_per_epoch=1)

        # define a generator to produce x=None and y=None
        def data_tensors_generator():
            while True:
                yield (None, None)

        generator = data_tensors_generator()

        # test fit_generator for framework-native data tensors
        out = model.fit_generator(generator, epochs=1,
                                  steps_per_epoch=3)

        # test evaluate_generator for framework-native data tensors
        out = model.evaluate_generator(generator, steps=3)

        # test fit with validation data
        with pytest.raises(ValueError):
            out = model.fit(None, None,
                            epochs=1,
                            steps_per_epoch=None,
                            validation_steps=2)
        out = model.fit(None, None,
                        epochs=1,
                        steps_per_epoch=2,
                        validation_steps=2)

        # test evaluate
        with pytest.raises(ValueError):
            out = model.evaluate(None, None, batch_size=10)
        out = model.evaluate(None, None, steps=3)

        # test predict
#.........这里部分代码省略.........
开发者ID:Dapid,项目名称:keras,代码行数:103,代码来源:test_training.py


注:本文中的keras.engine.training.Model.evaluate_generator方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。