本文整理汇总了Python中keras.engine.training.Model.to_json方法的典型用法代码示例。如果您正苦于以下问题:Python Model.to_json方法的具体用法?Python Model.to_json怎么用?Python Model.to_json使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.engine.training.Model
的用法示例。
在下文中一共展示了Model.to_json方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: build_CNN_model
# 需要导入模块: from keras.engine.training import Model [as 别名]
# 或者: from keras.engine.training.Model import to_json [as 别名]
#.........这里部分代码省略.........
# kernel_regularizer=conv_reg3,
# dilation_rate=1,
# name='ConvLayer3')(layer)
#
# layer = SpatialDropout1D(0.50)(layer)
#
# layer = MaxPooling1D(pool_size=pool_len3)(layer)
# #layer = GlobalMaxPool1D()(layer)
#
# layer = Convolution1D(filters=num_filters4,
# kernel_size=filter_length4,
# padding=region,
# activation=conv_activation4,
# kernel_initializer=conv_init4,
# kernel_regularizer=conv_reg4,
# dilation_rate=1,
# name='ConvLayer4')(layer)
#
# #layer = leaky_relu(layer)
#
# layer = SpatialDropout1D(0.50)(layer)
#
# layer = MaxPooling1D(pool_size=pool_len4)(layer)
# #layer = GlobalMaxPool1D()(layer)
#
# # layer = BatchNormalization()(layer)
layer = Flatten()(layer)
layer = Dense(dense_dims0, activation=dense_activation0, kernel_regularizer=dense_reg0,
kernel_initializer='glorot_normal', bias_initializer='zeros',
name='dense0')(layer)
layer = Dropout(0.50)(layer)
layer = Dense(dense_dims1, activation=dense_activation1, kernel_regularizer=dense_reg1,
kernel_initializer='glorot_normal', bias_initializer='zeros',
name='dense1')(layer)
layer = Dropout(0.50)(layer)
# layer = Dense(dense_dims2, activation=dense_activation2, kernel_regularizer=dense_reg2,
# kernel_initializer=dense_init2,
# name='dense2')(layer)
#
#
# layer = Dropout(0.50)(layer)
#
# layer = Dense(dense_dims3, activation=dense_activation3, kernel_regularizer=dense_reg3,
# kernel_initializer=dense_init3,
# name='dense3_outA')(layer)
# #layer = leaky_relu(layer)
#
if is_IntermediateModel:
return Model(inputs=[review_input], outputs=[layer], name="CNN_model")
#
# layer = Dropout(0.5)(layer)
layer = Dense(dense_dims_final, activation=dense_activation_final, kernel_initializer=dense_init_final,
kernel_regularizer=dense_reg0,
name='output_Full')(layer)
CNN_model = Model(inputs=[review_input], outputs=[layer], name="CNN_model")
CNN_model.compile(optimizer=Adam(lr=0.001, decay=0.0), loss=loss_func, metrics=[binary_accuracy])
if load_weight_path is not None:
CNN_model.load_weights(load_weight_path)
hist = ""
if do_training:
weightPath = os.path.join(modelParameters.WEIGHT_PATH, filename)
configPath = os.path.join(modelParameters.WEIGHT_PATH, filename_config)
with open(configPath + ".json", 'wb') as f:
f.write(CNN_model.to_json())
checkpoint = ModelCheckpoint(weightPath + '_W.{epoch:02d}-{val_loss:.4f}.hdf5',
verbose=1, save_best_only=True, save_weights_only=False, monitor='val_loss')
earlyStop = EarlyStopping(patience=3, verbose=1, monitor='val_loss')
LRadjuster = ReduceLROnPlateau(monitor='val_loss', factor=0.30, patience=0, verbose=1, cooldown=1,
min_lr=0.00001, epsilon=1e-2)
call_backs = [checkpoint, earlyStop, LRadjuster]
CNN_model.summary()
hist = CNN_model.fit(*model_inputs['training'],
batch_size=batch_size,
epochs=nb_epoch, verbose=1,
validation_data=model_inputs['dev'],
callbacks=call_backs)
return {"model": CNN_model, "hist": hist}