当前位置: 首页>>代码示例>>Python>>正文


Python training.Model类代码示例

本文整理汇总了Python中keras.engine.training.Model的典型用法代码示例。如果您正苦于以下问题:Python Model类的具体用法?Python Model怎么用?Python Model使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了Model类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_warnings

def test_warnings():
    a = Input(shape=(3,), name='input_a')
    b = Input(shape=(3,), name='input_b')

    a_2 = Dense(4, name='dense_1')(a)
    dp = Dropout(0.5, name='dropout')
    b_2 = dp(b)

    model = Model([a, b], [a_2, b_2])

    optimizer = 'rmsprop'
    loss = 'mse'
    loss_weights = [1., 0.5]
    model.compile(optimizer, loss, metrics=[], loss_weights=loss_weights,
                  sample_weight_mode=None)

    def gen_data(batch_sz):
        while True:
            yield ([np.random.random((batch_sz, 3)), np.random.random((batch_sz, 3))],
                   [np.random.random((batch_sz, 4)), np.random.random((batch_sz, 3))])

    with pytest.warns(Warning) as w:
        out = model.fit_generator(gen_data(4), steps_per_epoch=10, use_multiprocessing=True, workers=2)
    warning_raised = any(['Sequence' in str(w_.message) for w_ in w])
    assert warning_raised, 'No warning raised when using generator with processes.'

    with pytest.warns(None) as w:
        out = model.fit_generator(RandomSequence(3), steps_per_epoch=4, use_multiprocessing=True, workers=2)
    assert all(['Sequence' not in str(w_.message) for w_ in w]), 'A warning was raised for Sequence.'
开发者ID:pkainz,项目名称:keras,代码行数:29,代码来源:test_training.py

示例2: test_sparse_input_validation_split

def test_sparse_input_validation_split():
    test_input = sparse.random(6, 3, density=0.25).tocsr()
    in1 = Input(shape=(3,), sparse=True)
    out1 = Dense(4)(in1)
    test_output = np.random.random((6, 4))
    model = Model(in1, out1)
    model.compile('rmsprop', 'mse')
    model.fit(test_input, test_output, epochs=1, batch_size=2, validation_split=0.2)
开发者ID:pkainz,项目名称:keras,代码行数:8,代码来源:test_training.py

示例3: test_resnet

def test_resnet():
    n = 4
    x = Input(shape=(1, 8, 8))
    y = sequential([
        conv2d_block(n),
        resnet(n)
    ])(x)
    model = Model(x, y)
    assert model.get_output_shape_for((None, 1, 8, 8)) == (None, n, 8, 8)
开发者ID:BioroboticsLab,项目名称:diktya,代码行数:9,代码来源:test_blocks.py

示例4: m

def m():
    x = Input(shape=(input_size + output_size, nb_chars))
    m_realness = sequential([
        LSTM(14),
        Dense(1, activation='sigmoid'),
    ])(x)
    m = Model([x], [m_realness])
    m.compile(Adam(), 'mse')
    return m
开发者ID:berleon,项目名称:seqgan,代码行数:9,代码来源:test_seqgan.py

示例5: decoder_dummy

def decoder_dummy(label_sizes, nb_filter=16, data_shape=(1, 64, 64), nb_bits=12,
                  optimizer='adam'):

    input = Input(shape=data_shape)
    x = input
    outputs, losses = decoder_end_block(x, label_sizes, nb_bits,
                                        activation=lambda: ELU())

    model = Model(input, list(outputs.values()))
    model.compile(optimizer, loss=list(losses.values()),
                  loss_weights={k: decoder_loss_weights(k) for k in losses.keys()})
    return model
开发者ID:berleon,项目名称:deepdecoder,代码行数:12,代码来源:networks.py

示例6: test_model_multiple_calls

def test_model_multiple_calls():
    x1 = Input(shape=(20,))

    y1 = sequential([
        Dense(10),
        Dense(1),
    ])(x1)
    m1 = Model(x1, y1)

    x2 = Input(shape=(25,))
    y2 = sequential([
        Dense(20),
        m1
    ])(x2)
    m2 = Model(x2, y2)
    m2.compile('adam', 'mse')

    x3 = Input(shape=(20,))
    y3 = sequential([
        Dense(25),
        m2
    ])(x3)
    m3 = Model(x3, y3)
    m3.compile('adam', 'mse')
    m3.train_on_batch(np.zeros((32, 20)), np.zeros((32, 1)))
开发者ID:berleon,项目名称:deepdecoder,代码行数:25,代码来源:test_render_gan.py

示例7: decoder_baseline

def decoder_baseline(label_sizes, nb_bits=12, data_shape=(1, 64, 64),
                     depth=1, nb_filter=16, optimizer='adam'):
    n = nb_filter
    input = Input(shape=data_shape)
    x = sequential([
        conv2d_block(n, depth=depth, pooling='max'),    # 32x32
        conv2d_block(2*n, depth=depth, pooling='max'),  # 16x16
        conv2d_block(4*n, depth=depth, pooling='max'),  # 8x8
        conv2d_block(8*n, depth=depth, pooling='max'),  # 4x4
    ])(input)
    outputs, losses = decoder_end_block(x, label_sizes, nb_bits,
                                        activation=lambda: ELU())
    model = Model(input, list(outputs.values()))
    model.compile(optimizer, loss=list(losses.values()),)
    return model
开发者ID:berleon,项目名称:deepdecoder,代码行数:15,代码来源:networks.py

示例8: test_sparse_placeholder_fit

def test_sparse_placeholder_fit():
    test_inputs = [sparse.random(6, 3, density=0.25).tocsr() for _ in range(2)]
    test_outputs = [sparse.random(6, i, density=0.25).tocsr() for i in range(3, 5)]
    in1 = Input(shape=(3,))
    in2 = Input(shape=(3,), sparse=True)
    out1 = Dropout(0.5, name='dropout')(in1)
    out2 = Dense(4, name='dense_1')(in2)
    model = Model([in1, in2], [out1, out2])
    model.predict(test_inputs, batch_size=2)
    model.compile('rmsprop', 'mse')
    model.fit(test_inputs, test_outputs, epochs=1, batch_size=2, validation_split=0.5)
    model.evaluate(test_inputs, test_outputs, batch_size=2)
开发者ID:Dapid,项目名称:keras,代码行数:12,代码来源:test_training.py

示例9: build

    def build(self):
        mc = self.config.model
        in_x = x = Input((14, 10, 9)) # 14 x 10 x 9

        # (batch, channels, height, width)
        x = Conv2D(filters=mc.cnn_filter_num, kernel_size=mc.cnn_first_filter_size, padding="same",
                   data_format="channels_first", use_bias=False, kernel_regularizer=l2(mc.l2_reg),
                   name="input_conv-"+str(mc.cnn_first_filter_size)+"-"+str(mc.cnn_filter_num))(x)
        x = BatchNormalization(axis=1, name="input_batchnorm")(x)
        x = Activation("relu", name="input_relu")(x)

        for i in range(mc.res_layer_num):
            x = self._build_residual_block(x, i + 1)

        res_out = x

        # for policy output
        x = Conv2D(filters=2, kernel_size=1, data_format="channels_first", use_bias=False, 
                    kernel_regularizer=l2(mc.l2_reg), name="policy_conv-1-2")(res_out)
        x = BatchNormalization(axis=1, name="policy_batchnorm")(x)
        x = Activation("relu", name="policy_relu")(x)
        x = Flatten(name="policy_flatten")(x)
        policy_out = Dense(self.n_labels, kernel_regularizer=l2(mc.l2_reg), activation="softmax", name="policy_out")(x)

        # for value output
        x = Conv2D(filters=4, kernel_size=1, data_format="channels_first", use_bias=False, 
                    kernel_regularizer=l2(mc.l2_reg), name="value_conv-1-4")(res_out)
        x = BatchNormalization(axis=1, name="value_batchnorm")(x)
        x = Activation("relu",name="value_relu")(x)
        x = Flatten(name="value_flatten")(x)
        x = Dense(mc.value_fc_size, kernel_regularizer=l2(mc.l2_reg), activation="relu", name="value_dense")(x)
        value_out = Dense(1, kernel_regularizer=l2(mc.l2_reg), activation="tanh", name="value_out")(x)

        self.model = Model(in_x, [policy_out, value_out], name="cchess_model")
        self.graph = tf.get_default_graph()
开发者ID:zhuzhenping,项目名称:ChineseChess-AlphaZero,代码行数:35,代码来源:model.py

示例10: create_policy_value_net

    def create_policy_value_net(self):
        """create the policy value network """   
        in_x = network = Input((4, self.board_width, self.board_height))

        # conv layers
        network = Conv2D(filters=32, kernel_size=(3, 3), padding="same", data_format="channels_first", activation="relu", kernel_regularizer=l2(self.l2_const))(network)
        network = Conv2D(filters=64, kernel_size=(3, 3), padding="same", data_format="channels_first", activation="relu", kernel_regularizer=l2(self.l2_const))(network)
        network = Conv2D(filters=128, kernel_size=(3, 3), padding="same", data_format="channels_first", activation="relu", kernel_regularizer=l2(self.l2_const))(network)
        # action policy layers
        policy_net = Conv2D(filters=4, kernel_size=(1, 1), data_format="channels_first", activation="relu", kernel_regularizer=l2(self.l2_const))(network)
        policy_net = Flatten()(policy_net)
        self.policy_net = Dense(self.board_width*self.board_height, activation="softmax", kernel_regularizer=l2(self.l2_const))(policy_net)
        # state value layers
        value_net = Conv2D(filters=2, kernel_size=(1, 1), data_format="channels_first", activation="relu", kernel_regularizer=l2(self.l2_const))(network)
        value_net = Flatten()(value_net)
        value_net = Dense(64, kernel_regularizer=l2(self.l2_const))(value_net)
        self.value_net = Dense(1, activation="tanh", kernel_regularizer=l2(self.l2_const))(value_net)

        self.model = Model(in_x, [self.policy_net, self.value_net])
        
        def policy_value(state_input):
            state_input_union = np.array(state_input)
            results = self.model.predict_on_batch(state_input_union)
            return results
        self.policy_value = policy_value
开发者ID:Vendeloeranu,项目名称:AlphaZero_Gomoku,代码行数:25,代码来源:policy_value_net_keras.py

示例11: create_network

    def create_network(self):
        x_in = Input((3, 8, 8))
        x = Conv2D(filters=128, kernel_size=(3,3), padding="same", data_format="channels_first")(x_in)
        x = BatchNormalization(axis=1)(x)
        x = Activation("relu")(x)
        for _ in range(10):
            x = self._build_residual_block(x)

        res_out = x
        
        x = Conv2D(filters=2, kernel_size=1, data_format="channels_first")(res_out)
        x = BatchNormalization(axis=1)(x)
        x = Activation("relu")(x)
        x = Flatten()(x)
        policy_out = Dense(8*8+1, activation="softmax", name="policy_out")(x)

        x = Conv2D(filters=1, kernel_size=1, data_format="channels_first")(res_out)
        x = BatchNormalization(axis=1)(x)
        x = Activation("relu")(x)
        x = Flatten()(x)
        x = Dense(64, activation="relu")(x)
        value_out =  Dense(1, activation="tanh", name="value_out")(x)
        
        self.network = Model(x_in, [policy_out, value_out], name="reversi_model")
        self.compile()
开发者ID:1715509415,项目名称:alpha_zero_othello,代码行数:25,代码来源:aiplayer.py

示例12: test_render_gan_builder_generator_extended

def test_render_gan_builder_generator_extended():
    labels_shape = (27,)
    z_dim_offset = 50
    builder = RenderGAN(lambda x: tag3d_network_dense(x, nb_units=4),
                        generator_units=4, discriminator_units=4,
                        z_dim_offset=z_dim_offset,
                        labels_shape=(27,))
    bs = 19
    z, z_offset, labels = data(builder, bs)
    real = np.zeros((bs,) + builder.data_shape)

    labels_input = Input(shape=labels_shape)
    z = Input(shape=(z_dim_offset,))
    fake = builder.generator_given_z_and_labels([z, labels_input])
    m = Model([z, labels_input], [fake])
    m.compile('adam', 'mse')
    m.train_on_batch([z_offset, labels], real)
开发者ID:berleon,项目名称:deepdecoder,代码行数:17,代码来源:test_render_gan.py

示例13: build

 def build(self):
     dim_data = self.size_of_input_data_dim
     nb_time_step = self.size_of_input_timesteps
     news_input = Input(shape=(nb_time_step, dim_data))
     lstm = LSTM(output_dim=nb_hidden_units, dropout_U=dropout, dropout_W=dropout,
                 W_regularizer=l2(l2_norm_alpha), b_regularizer=l2(l2_norm_alpha), activation='tanh')
     bi_lstm = Bidirectional(lstm, input_shape=(nb_time_step, dim_data), merge_mode='concat')
     all_news_rep = bi_lstm(news_input)
     news_predictions = Dense(1, activation='linear')(all_news_rep)
     self.model = Model(news_input, news_predictions, name="deep rnn for financial news analysis")
开发者ID:qweraqq,项目名称:BetaStock,代码行数:10,代码来源:model.py

示例14: build

    def build(self):
        enc_size = self.size_of_env_observation()
        argument_size = IntegerArguments.size_of_arguments
        input_enc = InputLayer(batch_input_shape=(self.batch_size, enc_size), name='input_enc')
        input_arg = InputLayer(batch_input_shape=(self.batch_size, argument_size), name='input_arg')
        input_prg = Embedding(input_dim=PROGRAM_VEC_SIZE, output_dim=PROGRAM_KEY_VEC_SIZE, input_length=1,
                              batch_input_shape=(self.batch_size, 1))

        f_enc = Sequential(name='f_enc')
        f_enc.add(Merge([input_enc, input_arg], mode='concat'))
        f_enc.add(MaxoutDense(128, nb_feature=4))
        self.f_enc = f_enc

        program_embedding = Sequential(name='program_embedding')
        program_embedding.add(input_prg)

        f_enc_convert = Sequential(name='f_enc_convert')
        f_enc_convert.add(f_enc)
        f_enc_convert.add(RepeatVector(1))

        f_lstm = Sequential(name='f_lstm')
        f_lstm.add(Merge([f_enc_convert, program_embedding], mode='concat'))
        f_lstm.add(LSTM(256, return_sequences=False, stateful=True, W_regularizer=l2(0.0000001)))
        f_lstm.add(Activation('relu', name='relu_lstm_1'))
        f_lstm.add(RepeatVector(1))
        f_lstm.add(LSTM(256, return_sequences=False, stateful=True, W_regularizer=l2(0.0000001)))
        f_lstm.add(Activation('relu', name='relu_lstm_2'))
        # plot(f_lstm, to_file='f_lstm.png', show_shapes=True)

        f_end = Sequential(name='f_end')
        f_end.add(f_lstm)
        f_end.add(Dense(1, W_regularizer=l2(0.001)))
        f_end.add(Activation('sigmoid', name='sigmoid_end'))

        f_prog = Sequential(name='f_prog')
        f_prog.add(f_lstm)
        f_prog.add(Dense(PROGRAM_KEY_VEC_SIZE, activation="relu"))
        f_prog.add(Dense(PROGRAM_VEC_SIZE, W_regularizer=l2(0.0001)))
        f_prog.add(Activation('softmax', name='softmax_prog'))
        # plot(f_prog, to_file='f_prog.png', show_shapes=True)

        f_args = []
        for ai in range(1, IntegerArguments.max_arg_num+1):
            f_arg = Sequential(name='f_arg%s' % ai)
            f_arg.add(f_lstm)
            f_arg.add(Dense(IntegerArguments.depth, W_regularizer=l2(0.0001)))
            f_arg.add(Activation('softmax', name='softmax_arg%s' % ai))
            f_args.append(f_arg)
        # plot(f_arg, to_file='f_arg.png', show_shapes=True)

        self.model = Model([input_enc.input, input_arg.input, input_prg.input],
                           [f_end.output, f_prog.output] + [fa.output for fa in f_args],
                           name="npi")
        self.compile_model()
        plot(self.model, to_file='model.png', show_shapes=True)
开发者ID:episodeyang,项目名称:deep_learning_notes,代码行数:55,代码来源:model.py

示例15: load

 def load(self, config_path, weight_path):
     if os.path.exists(config_path) and os.path.exists(weight_path):
         logger.debug(f"loading model from {config_path}")
         with open(config_path, "rt") as f:
             self.model = Model.from_config(json.load(f))
         self.model.load_weights(weight_path)
         self.digest = self.fetch_digest(weight_path)
         self.graph = tf.get_default_graph()
         logger.debug(f"loaded model digest = {self.digest}")
         return True
     else:
         logger.debug(f"model files does not exist at {config_path} and {weight_path}")
         return False
开发者ID:zhuzhenping,项目名称:ChineseChess-AlphaZero,代码行数:13,代码来源:model.py


注:本文中的keras.engine.training.Model类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。