本文整理汇总了Python中biom.Table.is_empty方法的典型用法代码示例。如果您正苦于以下问题:Python Table.is_empty方法的具体用法?Python Table.is_empty怎么用?Python Table.is_empty使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类biom.Table
的用法示例。
在下文中一共展示了Table.is_empty方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: beta_phylogenetic
# 需要导入模块: from biom import Table [as 别名]
# 或者: from biom.Table import is_empty [as 别名]
def beta_phylogenetic(table: biom.Table, phylogeny: skbio.TreeNode,
metric: str, n_jobs: int=1)-> skbio.DistanceMatrix:
if metric not in phylogenetic_metrics():
raise ValueError("Unknown phylogenetic metric: %s" % metric)
if table.is_empty():
raise ValueError("The provided table object is empty")
if n_jobs != 1 and metric == 'weighted_unifrac':
raise ValueError("Weighted UniFrac is not parallelizable")
counts = table.matrix_data.toarray().astype(int).T
sample_ids = table.ids(axis='sample')
feature_ids = table.ids(axis='observation')
try:
results = skbio.diversity.beta_diversity(
metric=metric,
counts=counts,
ids=sample_ids,
otu_ids=feature_ids,
tree=phylogeny,
pairwise_func=sklearn.metrics.pairwise_distances,
n_jobs=n_jobs
)
except skbio.tree.MissingNodeError as e:
message = str(e).replace('otu_ids', 'feature_ids')
message = message.replace('tree', 'phylogeny')
raise skbio.tree.MissingNodeError(message)
return results
示例2: beta
# 需要导入模块: from biom import Table [as 别名]
# 或者: from biom.Table import is_empty [as 别名]
def beta(table: biom.Table, metric: str,
pseudocount: int=1, n_jobs: int=1)-> skbio.DistanceMatrix:
if not (metric in non_phylogenetic_metrics()):
raise ValueError("Unknown metric: %s" % metric)
counts = table.matrix_data.toarray().T
def aitchison(x, y, **kwds):
return euclidean(clr(x), clr(y))
if metric == 'aitchison':
counts += pseudocount
metric = aitchison
if table.is_empty():
raise ValueError("The provided table object is empty")
sample_ids = table.ids(axis='sample')
return skbio.diversity.beta_diversity(
metric=metric,
counts=counts,
ids=sample_ids,
validate=True,
pairwise_func=sklearn.metrics.pairwise_distances,
n_jobs=n_jobs
)
示例3: group
# 需要导入模块: from biom import Table [as 别名]
# 或者: from biom.Table import is_empty [as 别名]
def group(table: biom.Table, axis: str,
metadata: qiime2.CategoricalMetadataColumn, mode: str) -> biom.Table:
if table.is_empty():
raise ValueError("Cannot group an empty table.")
if axis == 'feature':
biom_axis = 'observation'
else:
biom_axis = axis
metadata = _munge_metadata_column(metadata, table.ids(axis=biom_axis),
axis)
grouped_table = table.collapse(
lambda axis_id, _: metadata.get_value(axis_id),
collapse_f=_mode_lookup[mode],
axis=biom_axis,
norm=False,
include_collapsed_metadata=False)
# Reorder axis by first unique appearance of each group value in metadata
# (makes it stable for identity mappings and easier to test)
# TODO use CategoricalMetadataColumn API for retrieving categories/groups,
# when the API exists.
series = metadata.to_series()
return grouped_table.sort_order(series.unique(), axis=biom_axis)
示例4: rarefy
# 需要导入模块: from biom import Table [as 别名]
# 或者: from biom.Table import is_empty [as 别名]
def rarefy(table: biom.Table, sampling_depth: int) -> biom.Table:
table = table.subsample(sampling_depth, axis='sample', by_id=False)
if table.is_empty():
raise ValueError('The rarefied table contains no samples or features. '
'Verify your table is valid and that you provided a '
'shallow enough sampling depth.')
return table
示例5: alpha
# 需要导入模块: from biom import Table [as 别名]
# 或者: from biom.Table import is_empty [as 别名]
def alpha(table: biom.Table, metric: str) -> pd.Series:
if metric not in non_phylogenetic_metrics():
raise ValueError("Unknown metric: %s" % metric)
if table.is_empty():
raise ValueError("The provided table object is empty")
counts = table.matrix_data.toarray().astype(int).T
sample_ids = table.ids(axis='sample')
result = skbio.diversity.alpha_diversity(metric=metric, counts=counts,
ids=sample_ids)
result.name = metric
return result
示例6: beta
# 需要导入模块: from biom import Table [as 别名]
# 或者: from biom.Table import is_empty [as 别名]
def beta(table: biom.Table, metric: str, n_jobs: int=1)-> skbio.DistanceMatrix:
if metric not in non_phylogenetic_metrics():
raise ValueError("Unknown metric: %s" % metric)
if table.is_empty():
raise ValueError("The provided table object is empty")
counts = table.matrix_data.toarray().astype(int).T
sample_ids = table.ids(axis='sample')
return skbio.diversity.beta_diversity(
metric=metric,
counts=counts,
ids=sample_ids,
pairwise_func=sklearn.metrics.pairwise_distances,
n_jobs=n_jobs
)
示例7: beta
# 需要导入模块: from biom import Table [as 别名]
# 或者: from biom.Table import is_empty [as 别名]
def beta(table: biom.Table, metric: str,
pseudocount: int = 1, n_jobs: int = 1) -> skbio.DistanceMatrix:
if not (metric in non_phylogenetic_metrics()):
raise ValueError("Unknown metric: %s" % metric)
counts = table.matrix_data.toarray().T
def aitchison(x, y, **kwds):
return euclidean(clr(x), clr(y))
def canberra_adkins(x, y, **kwds):
if (x < 0).any() or (y < 0).any():
raise ValueError("Canberra-Adkins is only defined over positive "
"values.")
nz = ((x > 0) | (y > 0))
x_ = x[nz]
y_ = y[nz]
nnz = nz.sum()
return (1. / nnz) * np.sum(np.abs(x_ - y_) / (x_ + y_))
if metric == 'aitchison':
counts += pseudocount
metric = aitchison
elif metric == 'canberra_adkins':
metric = canberra_adkins
if table.is_empty():
raise ValueError("The provided table object is empty")
sample_ids = table.ids(axis='sample')
return skbio.diversity.beta_diversity(
metric=metric,
counts=counts,
ids=sample_ids,
validate=True,
pairwise_func=sklearn.metrics.pairwise_distances,
n_jobs=n_jobs
)
示例8: alpha_phylogenetic
# 需要导入模块: from biom import Table [as 别名]
# 或者: from biom.Table import is_empty [as 别名]
def alpha_phylogenetic(table: biom.Table, phylogeny: skbio.TreeNode,
metric: str) -> pd.Series:
if metric not in phylogenetic_metrics():
raise ValueError("Unknown phylogenetic metric: %s" % metric)
if table.is_empty():
raise ValueError("The provided table object is empty")
counts = table.matrix_data.toarray().astype(int).T
sample_ids = table.ids(axis='sample')
feature_ids = table.ids(axis='observation')
try:
result = skbio.diversity.alpha_diversity(metric=metric,
counts=counts,
ids=sample_ids,
otu_ids=feature_ids,
tree=phylogeny)
except skbio.tree.MissingNodeError as e:
message = str(e).replace('otu_ids', 'feature_ids')
message = message.replace('tree', 'phylogeny')
raise skbio.tree.MissingNodeError(message)
result.name = metric
return result
示例9: alpha_rarefaction
# 需要导入模块: from biom import Table [as 别名]
# 或者: from biom.Table import is_empty [as 别名]
def alpha_rarefaction(output_dir: str, table: biom.Table, max_depth: int,
phylogeny: skbio.TreeNode = None, metrics: set = None,
metadata: qiime2.Metadata = None, min_depth: int = 1,
steps: int = 10, iterations: int = 10) -> None:
if metrics is None:
metrics = {'observed_otus', 'shannon'}
if phylogeny is not None:
metrics.add('faith_pd')
elif not metrics:
raise ValueError('`metrics` was given an empty set.')
else:
phylo_overlap = phylogenetic_metrics() & metrics
if phylo_overlap and phylogeny is None:
raise ValueError('Phylogenetic metric %s was requested but '
'phylogeny was not provided.' % phylo_overlap)
if max_depth <= min_depth:
raise ValueError('Provided max_depth of %d must be greater than '
'provided min_depth of %d.' % (max_depth, min_depth))
possible_steps = max_depth - min_depth
if possible_steps < steps:
raise ValueError('Provided number of steps (%d) is greater than the '
'steps possible between min_depth and '
'max_depth (%d).' % (steps, possible_steps))
if table.is_empty():
raise ValueError('Provided table is empty.')
max_frequency = max(table.sum(axis='sample'))
if max_frequency < max_depth:
raise ValueError('Provided max_depth of %d is greater than '
'the maximum sample total frequency of the '
'feature_table (%d).' % (max_depth, max_frequency))
if metadata is None:
columns, filtered_columns = set(), set()
else:
# Filter metadata to only include sample IDs present in the feature
# table. Also ensures every feature table sample ID is present in the
# metadata.
metadata = metadata.filter_ids(table.ids(axis='sample'))
# Drop metadata columns that aren't categorical, or consist solely of
# missing values.
pre_filtered_cols = set(metadata.columns)
metadata = metadata.filter_columns(column_type='categorical',
drop_all_missing=True)
filtered_columns = pre_filtered_cols - set(metadata.columns)
metadata_df = metadata.to_dataframe()
if metadata_df.empty or len(metadata.columns) == 0:
raise ValueError("All metadata filtered after dropping columns "
"that contained non-categorical data.")
metadata_df.columns = pd.MultiIndex.from_tuples(
[(c, '') for c in metadata_df.columns])
columns = metadata_df.columns.get_level_values(0)
data = _compute_rarefaction_data(table, min_depth, max_depth,
steps, iterations, phylogeny, metrics)
filenames = []
for m, data in data.items():
metric_name = quote(m)
filename = '%s.csv' % metric_name
if metadata is None:
n_df = _compute_summary(data, 'sample-id')
jsonp_filename = '%s.jsonp' % metric_name
_alpha_rarefaction_jsonp(output_dir, jsonp_filename, metric_name,
n_df, '')
filenames.append(jsonp_filename)
else:
merged = data.join(metadata_df, how='left')
for column in columns:
column_name = quote(column)
reindexed_df, counts = _reindex_with_metadata(column,
columns,
merged)
c_df = _compute_summary(reindexed_df, column, counts=counts)
jsonp_filename = "%s-%s.jsonp" % (metric_name, column_name)
_alpha_rarefaction_jsonp(output_dir, jsonp_filename,
metric_name, c_df, column)
filenames.append(jsonp_filename)
with open(os.path.join(output_dir, filename), 'w') as fh:
data.columns = ['depth-%d_iter-%d' % (t[0], t[1])
for t in data.columns.values]
if metadata is not None:
data = data.join(metadata.to_dataframe(), how='left')
data.to_csv(fh, index_label=['sample-id'])
index = os.path.join(TEMPLATES, 'alpha_rarefaction_assets', 'index.html')
q2templates.render(index, output_dir,
context={'metrics': list(metrics),
'filenames': [quote(f) for f in filenames],
'columns': list(columns),
'steps': steps,
'filtered_columns': sorted(filtered_columns)})
shutil.copytree(os.path.join(TEMPLATES, 'alpha_rarefaction_assets',
'dist'),
#.........这里部分代码省略.........
示例10: beta_rarefaction
# 需要导入模块: from biom import Table [as 别名]
# 或者: from biom.Table import is_empty [as 别名]
def beta_rarefaction(output_dir: str, table: biom.Table, metric: str,
clustering_method: str, metadata: qiime2.Metadata,
sampling_depth: int, iterations: int=10,
phylogeny: skbio.TreeNode=None,
correlation_method: str='spearman',
color_scheme: str='BrBG') -> None:
if metric in phylogenetic_metrics():
if phylogeny is None:
raise ValueError("A phylogenetic metric (%s) was requested, "
"but a phylogenetic tree was not provided. "
"Phylogeny must be provided when using a "
"phylogenetic diversity metric." % metric)
beta_func = functools.partial(beta_phylogenetic, phylogeny=phylogeny)
else:
beta_func = beta
if table.is_empty():
raise ValueError("Input feature table is empty.")
# Filter metadata to only include sample IDs present in the feature table.
# Also ensures every feature table sample ID is present in the metadata.
metadata = metadata.filter_ids(table.ids(axis='sample'))
distance_matrices = _get_multiple_rarefaction(
beta_func, metric, iterations, table, sampling_depth)
primary = distance_matrices[0]
support = distance_matrices[1:]
heatmap_fig, similarity_df = _make_heatmap(
distance_matrices, metric, correlation_method, color_scheme)
heatmap_fig.savefig(os.path.join(output_dir, 'heatmap.svg'))
similarity_df.to_csv(
os.path.join(output_dir, 'rarefaction-iteration-correlation.tsv'),
sep='\t')
tree = _cluster_samples(primary, support, clustering_method)
tree.write(os.path.join(output_dir,
'sample-clustering-%s.tre' % clustering_method))
emperor = _jackknifed_emperor(primary, support, metadata)
emperor_dir = os.path.join(output_dir, 'emperor')
emperor.copy_support_files(emperor_dir)
with open(os.path.join(emperor_dir, 'index.html'), 'w') as fh:
fh.write(emperor.make_emperor(standalone=True))
templates = list(map(
lambda page: os.path.join(TEMPLATES, 'beta_rarefaction_assets', page),
['index.html', 'heatmap.html', 'tree.html', 'emperor.html']))
context = {
'metric': metric,
'clustering_method': clustering_method,
'tabs': [{'url': 'emperor.html',
'title': 'PCoA'},
{'url': 'heatmap.html',
'title': 'Heatmap'},
{'url': 'tree.html',
'title': 'Clustering'}]
}
q2templates.render(templates, output_dir, context=context)
示例11: alpha_rarefaction
# 需要导入模块: from biom import Table [as 别名]
# 或者: from biom.Table import is_empty [as 别名]
def alpha_rarefaction(output_dir: str, table: biom.Table, max_depth: int,
phylogeny: skbio.TreeNode=None, metrics: set=None,
metadata: qiime2.Metadata=None, min_depth: int=1,
steps: int=10, iterations: int=10) -> None:
if metrics is None:
metrics = {'observed_otus', 'shannon'}
if phylogeny is not None:
metrics.add('faith_pd')
elif not metrics:
raise ValueError('`metrics` was given an empty set.')
else:
phylo_overlap = phylogenetic_metrics() & metrics
if phylo_overlap and phylogeny is None:
raise ValueError('Phylogenetic metric %s was requested but '
'phylogeny was not provided.' % phylo_overlap)
if max_depth <= min_depth:
raise ValueError('Provided max_depth of %d must be greater than '
'provided min_depth of %d.' % (max_depth, min_depth))
possible_steps = max_depth - min_depth
if possible_steps < steps:
raise ValueError('Provided number of steps (%d) is greater than the '
'steps possible between min_depth and '
'max_depth (%d).' % (steps, possible_steps))
if table.is_empty():
raise ValueError('Provided table is empty.')
max_frequency = max(table.sum(axis='sample'))
if max_frequency < max_depth:
raise ValueError('Provided max_depth of %d is greater than '
'the maximum sample total frequency of the '
'feature_table (%d).' % (max_depth, max_frequency))
if metadata is not None:
metadata_ids = metadata.ids()
table_ids = set(table.ids(axis='sample'))
if not table_ids.issubset(metadata_ids):
raise ValueError('Missing samples in metadata: %r' %
table_ids.difference(metadata_ids))
filenames, categories, empty_columns = [], [], []
data = _compute_rarefaction_data(table, min_depth, max_depth,
steps, iterations, phylogeny, metrics)
for m, data in data.items():
metric_name = quote(m)
filename = '%s.csv' % metric_name
if metadata is None:
n_df = _compute_summary(data, 'sample-id')
jsonp_filename = '%s.jsonp' % metric_name
_alpha_rarefaction_jsonp(output_dir, jsonp_filename, metric_name,
n_df, '')
filenames.append(jsonp_filename)
else:
metadata_df = metadata.to_dataframe()
metadata_df = metadata_df.loc[data.index]
all_columns = metadata_df.columns
metadata_df.dropna(axis='columns', how='all', inplace=True)
empty_columns = set(all_columns) - set(metadata_df.columns)
metadata_df.columns = pd.MultiIndex.from_tuples(
[(c, '') for c in metadata_df.columns])
merged = data.join(metadata_df, how='left')
categories = metadata_df.columns.get_level_values(0)
for category in categories:
category_name = quote(category)
reindexed_df, counts = _reindex_with_metadata(category,
categories,
merged)
c_df = _compute_summary(reindexed_df, category, counts=counts)
jsonp_filename = "%s-%s.jsonp" % (metric_name, category_name)
_alpha_rarefaction_jsonp(output_dir, jsonp_filename,
metric_name, c_df, category_name)
filenames.append(jsonp_filename)
with open(os.path.join(output_dir, filename), 'w') as fh:
data.columns = ['depth-%d_iter-%d' % (t[0], t[1])
for t in data.columns.values]
if metadata is not None:
data = data.join(metadata.to_dataframe(), how='left')
data.to_csv(fh, index_label=['sample-id'])
index = os.path.join(TEMPLATES, 'alpha_rarefaction_assets', 'index.html')
q2templates.render(index, output_dir,
context={'metrics': list(metrics),
'filenames': filenames,
'categories': list(categories),
'empty_columns': sorted(empty_columns)})
shutil.copytree(os.path.join(TEMPLATES, 'alpha_rarefaction_assets',
'dist'),
os.path.join(output_dir, 'dist'))