当前位置: 首页>>代码示例>>Python>>正文


Python Table.ids方法代码示例

本文整理汇总了Python中biom.Table.ids方法的典型用法代码示例。如果您正苦于以下问题:Python Table.ids方法的具体用法?Python Table.ids怎么用?Python Table.ids使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在biom.Table的用法示例。


在下文中一共展示了Table.ids方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: merge

# 需要导入模块: from biom import Table [as 别名]
# 或者: from biom.Table import ids [as 别名]
def merge(table1: biom.Table, table2: biom.Table) -> biom.Table:
    table1_sids = set(table1.ids(axis='sample'))
    table2_sids = set(table2.ids(axis='sample'))
    if len(table1_sids & table2_sids) > 0:
        raise ValueError('Some samples are present in both tables: %s' %
                         ', '.join(table1_sids & table2_sids))
    return table1.merge(table2)
开发者ID:jairideout,项目名称:feature-table,代码行数:9,代码来源:_merge.py

示例2: beta_phylogenetic

# 需要导入模块: from biom import Table [as 别名]
# 或者: from biom.Table import ids [as 别名]
def beta_phylogenetic(table: biom.Table, phylogeny: skbio.TreeNode,
                      metric: str, n_jobs: int=1)-> skbio.DistanceMatrix:
    if metric not in phylogenetic_metrics():
        raise ValueError("Unknown phylogenetic metric: %s" % metric)
    if table.is_empty():
        raise ValueError("The provided table object is empty")
    if n_jobs != 1 and metric == 'weighted_unifrac':
        raise ValueError("Weighted UniFrac is not parallelizable")

    counts = table.matrix_data.toarray().astype(int).T
    sample_ids = table.ids(axis='sample')
    feature_ids = table.ids(axis='observation')

    try:
        results = skbio.diversity.beta_diversity(
            metric=metric,
            counts=counts,
            ids=sample_ids,
            otu_ids=feature_ids,
            tree=phylogeny,
            pairwise_func=sklearn.metrics.pairwise_distances,
            n_jobs=n_jobs
        )
    except skbio.tree.MissingNodeError as e:
        message = str(e).replace('otu_ids', 'feature_ids')
        message = message.replace('tree', 'phylogeny')
        raise skbio.tree.MissingNodeError(message)

    return results
开发者ID:gregcaporaso,项目名称:diversity,代码行数:31,代码来源:_method.py

示例3: group

# 需要导入模块: from biom import Table [as 别名]
# 或者: from biom.Table import ids [as 别名]
def group(table: biom.Table, axis: str,
          metadata: qiime2.CategoricalMetadataColumn, mode: str) -> biom.Table:
    if table.is_empty():
        raise ValueError("Cannot group an empty table.")

    if axis == 'feature':
        biom_axis = 'observation'
    else:
        biom_axis = axis

    metadata = _munge_metadata_column(metadata, table.ids(axis=biom_axis),
                                      axis)

    grouped_table = table.collapse(
        lambda axis_id, _: metadata.get_value(axis_id),
        collapse_f=_mode_lookup[mode],
        axis=biom_axis,
        norm=False,
        include_collapsed_metadata=False)
    # Reorder axis by first unique appearance of each group value in metadata
    # (makes it stable for identity mappings and easier to test)
    # TODO use CategoricalMetadataColumn API for retrieving categories/groups,
    # when the API exists.
    series = metadata.to_series()
    return grouped_table.sort_order(series.unique(), axis=biom_axis)
开发者ID:jakereps,项目名称:q2-feature-table,代码行数:27,代码来源:_group.py

示例4: beta

# 需要导入模块: from biom import Table [as 别名]
# 或者: from biom.Table import ids [as 别名]
def beta(table: biom.Table, metric: str,
         pseudocount: int=1, n_jobs: int=1)-> skbio.DistanceMatrix:

    if not (metric in non_phylogenetic_metrics()):
        raise ValueError("Unknown metric: %s" % metric)

    counts = table.matrix_data.toarray().T

    def aitchison(x, y, **kwds):
        return euclidean(clr(x), clr(y))

    if metric == 'aitchison':
        counts += pseudocount
        metric = aitchison

    if table.is_empty():
        raise ValueError("The provided table object is empty")

    sample_ids = table.ids(axis='sample')

    return skbio.diversity.beta_diversity(
        metric=metric,
        counts=counts,
        ids=sample_ids,
        validate=True,
        pairwise_func=sklearn.metrics.pairwise_distances,
        n_jobs=n_jobs
    )
开发者ID:jakereps,项目名称:q2-diversity,代码行数:30,代码来源:_method.py

示例5: filter_table

# 需要导入模块: from biom import Table [as 别名]
# 或者: from biom.Table import ids [as 别名]
def filter_table(table: biom.Table, tree: skbio.TreeNode) -> biom.Table:
    """ Filter table to remove feature ids that are not tip ids in tree
    """
    tip_ids = set([t.name for t in tree.tips()])
    feature_ids = set(table.ids(axis='observation'))
    # ids_to_keep can only include ids that are in table
    ids_to_keep = tip_ids & feature_ids
    table.filter(ids_to_keep, axis='observation', inplace=True)
    return table
开发者ID:qiime2,项目名称:q2-phylogeny,代码行数:11,代码来源:_filter.py

示例6: test_collapse_full

# 需要导入模块: from biom import Table [as 别名]
# 或者: from biom.Table import ids [as 别名]
    def test_collapse_full(self):
        obs = collapse_full(table)
        exp = Table(array([[0.00769230769231], [0.0282051282051],
                           [0.0487179487179], [0.0692307692308],
                           [0.0897435897436], [0.110256410256],
                           [0.130769230769], [0.151282051282],
                           [0.171794871795], [0.192307692308]]),
                    observ_ids, ['average'],
                    observation_metadata=observ_metadata)
        for r in range(10):
            assert_almost_equal(obs[r, 0],  exp[r, 0])
        self.assertEqual(obs.ids(), exp.ids())
        self.assertItemsEqual(obs.ids('observation'), exp.ids('observation'))

        obs_meta = []
        for _, _, m in obs.iter(axis='observation'):
            obs_meta.append(m)
        self.assertItemsEqual(obs_meta, observ_metadata)
开发者ID:biocore,项目名称:American-Gut,代码行数:20,代码来源:test_util.py

示例7: alpha

# 需要导入模块: from biom import Table [as 别名]
# 或者: from biom.Table import ids [as 别名]
def alpha(table: biom.Table, metric: str) -> pd.Series:
    if metric not in non_phylogenetic_metrics():
        raise ValueError("Unknown metric: %s" % metric)

    counts = table.matrix_data.toarray().astype(int).T
    sample_ids = table.ids(axis='sample')

    result = skbio.diversity.alpha_diversity(metric=metric, counts=counts,
                                             ids=sample_ids)
    result.name = metric
    return result
开发者ID:jairideout,项目名称:diversity,代码行数:13,代码来源:_method.py

示例8: alpha_phylogenetic

# 需要导入模块: from biom import Table [as 别名]
# 或者: from biom.Table import ids [as 别名]
def alpha_phylogenetic(table: biom.Table, phylogeny: skbio.TreeNode,
                       metric: str) -> pd.Series:
    if metric not in phylogenetic_metrics():
        raise ValueError("Unknown phylogenetic metric: %s" % metric)

    counts = table.matrix_data.toarray().astype(int).T
    sample_ids = table.ids(axis='sample')
    feature_ids = table.ids(axis='observation')

    try:
        result = skbio.diversity.alpha_diversity(metric=metric,
                                                 counts=counts,
                                                 ids=sample_ids,
                                                 otu_ids=feature_ids,
                                                 tree=phylogeny)
    except skbio.tree.MissingNodeError as e:
        message = str(e).replace('otu_ids', 'feature_ids')
        message = message.replace('tree', 'phylogeny')
        raise skbio.tree.MissingNodeError(message)

    result.name = metric
    return result
开发者ID:jairideout,项目名称:diversity,代码行数:24,代码来源:_method.py

示例9: beta

# 需要导入模块: from biom import Table [as 别名]
# 或者: from biom.Table import ids [as 别名]
def beta(table: biom.Table, metric: str, n_jobs: int=1)-> skbio.DistanceMatrix:
    if metric not in non_phylogenetic_metrics():
        raise ValueError("Unknown metric: %s" % metric)
    if table.is_empty():
        raise ValueError("The provided table object is empty")

    counts = table.matrix_data.toarray().astype(int).T
    sample_ids = table.ids(axis='sample')

    return skbio.diversity.beta_diversity(
        metric=metric,
        counts=counts,
        ids=sample_ids,
        pairwise_func=sklearn.metrics.pairwise_distances,
        n_jobs=n_jobs
    )
开发者ID:gregcaporaso,项目名称:diversity,代码行数:18,代码来源:_method.py

示例10: beta

# 需要导入模块: from biom import Table [as 别名]
# 或者: from biom.Table import ids [as 别名]
def beta(table: biom.Table, metric: str,
         pseudocount: int = 1, n_jobs: int = 1) -> skbio.DistanceMatrix:

    if not (metric in non_phylogenetic_metrics()):
        raise ValueError("Unknown metric: %s" % metric)

    counts = table.matrix_data.toarray().T

    def aitchison(x, y, **kwds):
        return euclidean(clr(x), clr(y))

    def canberra_adkins(x, y, **kwds):
        if (x < 0).any() or (y < 0).any():
            raise ValueError("Canberra-Adkins is only defined over positive "
                             "values.")

        nz = ((x > 0) | (y > 0))
        x_ = x[nz]
        y_ = y[nz]
        nnz = nz.sum()

        return (1. / nnz) * np.sum(np.abs(x_ - y_) / (x_ + y_))

    if metric == 'aitchison':
        counts += pseudocount
        metric = aitchison
    elif metric == 'canberra_adkins':
        metric = canberra_adkins

    if table.is_empty():
        raise ValueError("The provided table object is empty")

    sample_ids = table.ids(axis='sample')

    return skbio.diversity.beta_diversity(
        metric=metric,
        counts=counts,
        ids=sample_ids,
        validate=True,
        pairwise_func=sklearn.metrics.pairwise_distances,
        n_jobs=n_jobs
    )
开发者ID:qiime2,项目名称:q2-diversity,代码行数:44,代码来源:_method.py

示例11: filter_seqs

# 需要导入模块: from biom import Table [as 别名]
# 或者: from biom.Table import ids [as 别名]
def filter_seqs(data: pd.Series, table: biom.Table=None,
                metadata: qiime2.Metadata=None, where: str=None,
                exclude_ids: bool=False) -> pd.Series:
    if table is not None and metadata is not None:
        raise ValueError('Filtering with metadata and filtering with a table '
                         'are mutually exclusive.')
    elif table is None and metadata is None:
        raise ValueError('No filtering requested. Must provide either table '
                         'or metadata.')
    elif table is not None:
        ids_to_keep = table.ids(axis='observation')
    else:
        # Note, no need to check for missing feature IDs in the metadata,
        # because that is basically the point of this method.
        ids_to_keep = metadata.get_ids(where=where)

    if exclude_ids is True:
        ids_to_keep = set(data.index) - set(ids_to_keep)
    filtered = data[data.index.isin(ids_to_keep)]
    if filtered.empty is True:
        raise ValueError('All features were filtered out of the data.')
    return filtered
开发者ID:jakereps,项目名称:q2-feature-table,代码行数:24,代码来源:_filter.py

示例12: create_non_rarefied_biom_artifact

# 需要导入模块: from biom import Table [as 别名]
# 或者: from biom.Table import ids [as 别名]
def create_non_rarefied_biom_artifact(analysis, biom_data, rarefied_table):
    """Creates the initial non-rarefied BIOM artifact of the analysis

    Parameters
    ----------
    analysis : dict
        Dictionary with the analysis information
    biom_data : dict
        Dictionary with the biom file information
    rarefied_table : biom.Table
        The rarefied BIOM table

    Returns
    -------
    int
        The id of the new artifact
    """
    # The non rarefied biom artifact is the initial biom table of the analysis.
    # This table does not currently exist anywhere, so we need to actually
    # create the BIOM file. To create this BIOM file we need: (1) the samples
    # and artifacts they come from and (2) whether the samples where
    # renamed or not. (1) is on the database, but we need to inferr (2) from
    # the existing rarefied BIOM table. Fun, fun...

    with TRN:
        # Get the samples included in the BIOM table grouped by artifact id
        # Note that the analysis contains a BIOM table per data type included
        # in it, and the table analysis_sample does not differentiate between
        # datatypes, so we need to check the data type in the artifact table
        sql = """SELECT artifact_id, array_agg(sample_id)
                 FROM qiita.analysis_sample
                    JOIN qiita.artifact USING (artifact_id)
                 WHERE analysis_id = %s AND data_type_id = %s
                 GROUP BY artifact_id"""
        TRN.add(sql, [analysis['analysis_id'], biom_data['data_type_id']])
        samples_by_artifact = TRN.execute_fetchindex()

        # Create an empty BIOM table to be the new master table
        new_table = Table([], [], [])
        ids_map = {}
        for a_id, samples in samples_by_artifact:
            # Get the filepath of the BIOM table from the artifact
            artifact = Artifact(a_id)
            biom_fp = None
            for _, fp, fp_type in artifact.filepaths:
                if fp_type == 'biom':
                    biom_fp = fp
            # Note that we are sure that the biom table exists for sure, so
            # no need to check if biom_fp is undefined
            biom_table = load_table(biom_fp)
            samples = set(samples).intersection(biom_table.ids())
            biom_table.filter(samples, axis='sample', inplace=True)
            # we need to check if the table has samples left before merging
            if biom_table.shape[0] != 0 and biom_table.shape[1] != 0:
                new_table = new_table.merge(biom_table)
                ids_map.update({sid: "%d.%s" % (a_id, sid)
                                for sid in biom_table.ids()})

        # Check if we need to rename the sample ids in the biom table
        new_table_ids = set(new_table.ids())
        if not new_table_ids.issuperset(rarefied_table.ids()):
            # We need to rename the sample ids
            new_table.update_ids(ids_map, 'sample', True, True)

        sql = """INSERT INTO qiita.artifact
                    (generated_timestamp, data_type_id, visibility_id,
                     artifact_type_id, submitted_to_vamps)
            VALUES (%s, %s, %s, %s, %s)
            RETURNING artifact_id"""
        # Magic number 4 -> visibility sandbox
        # Magix number 7 -> biom artifact type
        TRN.add(sql, [analysis['timestamp'], biom_data['data_type_id'],
                      4, 7, False])
        artifact_id = TRN.execute_fetchlast()

        # Associate the artifact with the analysis
        sql = """INSERT INTO qiita.analysis_artifact
                    (analysis_id, artifact_id)
                 VALUES (%s, %s)"""
        TRN.add(sql, [analysis['analysis_id'], artifact_id])
        # Link the artifact with its file
        dd_id, mp = get_mountpoint('BIOM')[0]
        dir_fp = join(get_db_files_base_dir(), mp, str(artifact_id))
        if not exists(dir_fp):
            makedirs(dir_fp)
        new_table_fp = join(dir_fp, "biom_table.biom")
        with biom_open(new_table_fp, 'w') as f:
            new_table.to_hdf5(f, "Generated by Qiita")

        sql = """INSERT INTO qiita.filepath
                    (filepath, filepath_type_id, checksum,
                     checksum_algorithm_id, data_directory_id)
                 VALUES (%s, %s, %s, %s, %s)
                 RETURNING filepath_id"""
        # Magic number 7 -> filepath_type_id = 'biom'
        # Magic number 1 -> the checksum algorithm id
        TRN.add(sql, [basename(new_table_fp), 7,
                      compute_checksum(new_table_fp), 1, dd_id])
        fp_id = TRN.execute_fetchlast()
        sql = """INSERT INTO qiita.artifact_filepath
#.........这里部分代码省略.........
开发者ID:tkosciol,项目名称:qiita,代码行数:103,代码来源:54.py

示例13: _table_to_dataframe

# 需要导入模块: from biom import Table [as 别名]
# 或者: from biom.Table import ids [as 别名]
def _table_to_dataframe(table: biom.Table) -> pd.DataFrame:
    array = table.matrix_data.toarray().T
    sample_ids = table.ids(axis='sample')
    feature_ids = table.ids(axis='observation')
    return pd.DataFrame(array, index=sample_ids, columns=feature_ids)
开发者ID:BenKaehler,项目名称:q2-types,代码行数:7,代码来源:_transformer.py

示例14: alpha_rarefaction

# 需要导入模块: from biom import Table [as 别名]
# 或者: from biom.Table import ids [as 别名]
def alpha_rarefaction(output_dir: str, table: biom.Table, max_depth: int,
                      phylogeny: skbio.TreeNode = None, metrics: set = None,
                      metadata: qiime2.Metadata = None, min_depth: int = 1,
                      steps: int = 10, iterations: int = 10) -> None:

    if metrics is None:
        metrics = {'observed_otus', 'shannon'}
        if phylogeny is not None:
            metrics.add('faith_pd')
    elif not metrics:
        raise ValueError('`metrics` was given an empty set.')
    else:
        phylo_overlap = phylogenetic_metrics() & metrics
        if phylo_overlap and phylogeny is None:
            raise ValueError('Phylogenetic metric %s was requested but '
                             'phylogeny was not provided.' % phylo_overlap)

    if max_depth <= min_depth:
        raise ValueError('Provided max_depth of %d must be greater than '
                         'provided min_depth of %d.' % (max_depth, min_depth))
    possible_steps = max_depth - min_depth
    if possible_steps < steps:
        raise ValueError('Provided number of steps (%d) is greater than the '
                         'steps possible between min_depth and '
                         'max_depth (%d).' % (steps, possible_steps))
    if table.is_empty():
        raise ValueError('Provided table is empty.')
    max_frequency = max(table.sum(axis='sample'))
    if max_frequency < max_depth:
        raise ValueError('Provided max_depth of %d is greater than '
                         'the maximum sample total frequency of the '
                         'feature_table (%d).' % (max_depth, max_frequency))

    if metadata is None:
        columns, filtered_columns = set(), set()
    else:
        # Filter metadata to only include sample IDs present in the feature
        # table. Also ensures every feature table sample ID is present in the
        # metadata.
        metadata = metadata.filter_ids(table.ids(axis='sample'))

        # Drop metadata columns that aren't categorical, or consist solely of
        # missing values.
        pre_filtered_cols = set(metadata.columns)
        metadata = metadata.filter_columns(column_type='categorical',
                                           drop_all_missing=True)
        filtered_columns = pre_filtered_cols - set(metadata.columns)

        metadata_df = metadata.to_dataframe()
        if metadata_df.empty or len(metadata.columns) == 0:
            raise ValueError("All metadata filtered after dropping columns "
                             "that contained non-categorical data.")
        metadata_df.columns = pd.MultiIndex.from_tuples(
            [(c, '') for c in metadata_df.columns])
        columns = metadata_df.columns.get_level_values(0)

    data = _compute_rarefaction_data(table, min_depth, max_depth,
                                     steps, iterations, phylogeny, metrics)

    filenames = []
    for m, data in data.items():
        metric_name = quote(m)
        filename = '%s.csv' % metric_name

        if metadata is None:
            n_df = _compute_summary(data, 'sample-id')
            jsonp_filename = '%s.jsonp' % metric_name
            _alpha_rarefaction_jsonp(output_dir, jsonp_filename, metric_name,
                                     n_df, '')
            filenames.append(jsonp_filename)
        else:
            merged = data.join(metadata_df, how='left')
            for column in columns:
                column_name = quote(column)
                reindexed_df, counts = _reindex_with_metadata(column,
                                                              columns,
                                                              merged)
                c_df = _compute_summary(reindexed_df, column, counts=counts)
                jsonp_filename = "%s-%s.jsonp" % (metric_name, column_name)
                _alpha_rarefaction_jsonp(output_dir, jsonp_filename,
                                         metric_name, c_df, column)
                filenames.append(jsonp_filename)

        with open(os.path.join(output_dir, filename), 'w') as fh:
            data.columns = ['depth-%d_iter-%d' % (t[0], t[1])
                            for t in data.columns.values]
            if metadata is not None:
                data = data.join(metadata.to_dataframe(), how='left')
            data.to_csv(fh, index_label=['sample-id'])

    index = os.path.join(TEMPLATES, 'alpha_rarefaction_assets', 'index.html')
    q2templates.render(index, output_dir,
                       context={'metrics': list(metrics),
                                'filenames': [quote(f) for f in filenames],
                                'columns': list(columns),
                                'steps': steps,
                                'filtered_columns': sorted(filtered_columns)})

    shutil.copytree(os.path.join(TEMPLATES, 'alpha_rarefaction_assets',
                                 'dist'),
#.........这里部分代码省略.........
开发者ID:qiime2,项目名称:q2-diversity,代码行数:103,代码来源:_visualizer.py

示例15: beta_rarefaction

# 需要导入模块: from biom import Table [as 别名]
# 或者: from biom.Table import ids [as 别名]
def beta_rarefaction(output_dir: str, table: biom.Table, metric: str,
                     clustering_method: str, metadata: qiime2.Metadata,
                     sampling_depth: int, iterations: int=10,
                     phylogeny: skbio.TreeNode=None,
                     correlation_method: str='spearman',
                     color_scheme: str='BrBG') -> None:
    if metric in phylogenetic_metrics():
        if phylogeny is None:
            raise ValueError("A phylogenetic metric (%s) was requested, "
                             "but a phylogenetic tree was not provided. "
                             "Phylogeny must be provided when using a "
                             "phylogenetic diversity metric." % metric)
        beta_func = functools.partial(beta_phylogenetic, phylogeny=phylogeny)
    else:
        beta_func = beta

    if table.is_empty():
        raise ValueError("Input feature table is empty.")

    # Filter metadata to only include sample IDs present in the feature table.
    # Also ensures every feature table sample ID is present in the metadata.
    metadata = metadata.filter_ids(table.ids(axis='sample'))

    distance_matrices = _get_multiple_rarefaction(
        beta_func, metric, iterations, table, sampling_depth)
    primary = distance_matrices[0]
    support = distance_matrices[1:]

    heatmap_fig, similarity_df = _make_heatmap(
        distance_matrices, metric, correlation_method, color_scheme)
    heatmap_fig.savefig(os.path.join(output_dir, 'heatmap.svg'))
    similarity_df.to_csv(
        os.path.join(output_dir, 'rarefaction-iteration-correlation.tsv'),
        sep='\t')

    tree = _cluster_samples(primary, support, clustering_method)
    tree.write(os.path.join(output_dir,
                            'sample-clustering-%s.tre' % clustering_method))

    emperor = _jackknifed_emperor(primary, support, metadata)
    emperor_dir = os.path.join(output_dir, 'emperor')
    emperor.copy_support_files(emperor_dir)
    with open(os.path.join(emperor_dir, 'index.html'), 'w') as fh:
        fh.write(emperor.make_emperor(standalone=True))

    templates = list(map(
        lambda page: os.path.join(TEMPLATES, 'beta_rarefaction_assets', page),
        ['index.html', 'heatmap.html', 'tree.html', 'emperor.html']))

    context = {
        'metric': metric,
        'clustering_method': clustering_method,
        'tabs': [{'url': 'emperor.html',
                  'title': 'PCoA'},
                 {'url': 'heatmap.html',
                  'title': 'Heatmap'},
                 {'url': 'tree.html',
                  'title': 'Clustering'}]
    }

    q2templates.render(templates, output_dir, context=context)
开发者ID:jakereps,项目名称:q2-diversity,代码行数:63,代码来源:_beta_rarefaction.py


注:本文中的biom.Table.ids方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。