本文整理汇总了Python中SimpleCV.Image.histogram方法的典型用法代码示例。如果您正苦于以下问题:Python Image.histogram方法的具体用法?Python Image.histogram怎么用?Python Image.histogram使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SimpleCV.Image
的用法示例。
在下文中一共展示了Image.histogram方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: classify
# 需要导入模块: from SimpleCV import Image [as 别名]
# 或者: from SimpleCV.Image import histogram [as 别名]
def classify(im, K, show=False):
""" classify - classify an image using k-means algorithm.
Arguments:
* im - an image (ndarray) or a filename.
* K - number of classes.
* show = False - if True, display the image and the classes.
Return:
* imClasses - the classes of the image (ndarray, 2D).
See also:
* kMeans - K-means algorithm.
"""
a = Image(im)
a = a.histogram(255)
# Load image
if type(im) is str:
im = plt.imread(im)
# Reshape and apply k-mean
values = im.reshape((im.shape[0] * im.shape[1], -1))
centers, classes = kMeans(values, K)
imClasses = classes.reshape((im.shape[0], im.shape[1]))
## imClasses.save("imClassesH.png")
## imClassesHl=image("imClassesH.png")
## imClassHisto=imClassesH1.histogram(255)
# Display
if show:
cmap = 'gray' if im.ndim < 3 else None
plt.subplot(131), plt.imshow(im, cmap=cmap), plt.title('Imagen Gray')
plt.subplot(132), plt.imshow(imClasses), plt.title('Segmentacion por Clases')
pylab.subplot(133), pylab.plot(a), pylab.draw(), pylab.pause(0.0001), pylab.title('Histograma Img Gray')
plt.show()
# The end
return imClasses
示例2: Image
# 需要导入模块: from SimpleCV import Image [as 别名]
# 或者: from SimpleCV.Image import histogram [as 别名]
from SimpleCV import Image
# change this to process multiple images
img = Image("../images/beach.jpeg")
histogram = img.histogram()
print histogram.getFieldNames
示例3: Exception
# 需要导入模块: from SimpleCV import Image [as 别名]
# 或者: from SimpleCV.Image import histogram [as 别名]
* X - center of the classes, row by row (ndarray, 2D).
See also:
* kMeans - k-means classification.
* nearestNeighbor - nearest neighbor classification.
"""
# Check dimensions
if Y.ndim != 2:
raise Exception('data matrix must be a 2D ndarray')
if C.ndim != 1:
raise Exception('classes matrix must be a 1D ndarray')
if Y.shape[0] != C.shape[0]:
raise Exception('Y and C matrix must have the same number of rows')
# Create an empty array
K = C.max() + 1
X = np.ndarray((K, Y.shape[1]), Y.dtype)
# Compute barycenters
for k in range(K):
X[k,:] = Y[C == k,:].mean(0)
# Return them
return X
a = Image("hola5Gray.png")
b = a.histogram(255)
classify("hola5Gray.png", 2, show=True)
示例4: getHistogram
# 需要导入模块: from SimpleCV import Image [as 别名]
# 或者: from SimpleCV.Image import histogram [as 别名]
def getHistogram(imageFile):
im = Image(imageFile)
#im = im.toRGB()
im = im.toHSV()
return im.histogram(64)
示例5: Image
# 需要导入模块: from SimpleCV import Image [as 别名]
# 或者: from SimpleCV.Image import histogram [as 别名]
from SimpleCV import Image
from SimpleCV.Shell import plot
img = Image('ex21a.jpg') # Open ex21b.jpg and ex21c.jpg too :)
# Generate the histogram with 256 bins, one for each color
histogram = img.histogram(256)
# Show how many elements are in the list
len(histogram)
# Graphically display the histogram
plot(histogram)
示例6: Camera
# 需要导入模块: from SimpleCV import Image [as 别名]
# 或者: from SimpleCV.Image import histogram [as 别名]
#!/usr/bin/python
from SimpleCV import Camera, Display, Image
import matplotlib.pyplot as plt
import time
cam = Camera()
img = cam.getImage().save("img.jpg")
img = Image("img.jpg")
img.show()
imgGray = img.grayscale().save("imgGray.jpg")
imgGray = Image("imgGray.jpg")
imgGray.show()
hist = imgGray.histogram(255)
(red, green, blue) = img.splitChannels(False)
red_histogram = red.histogram(255)
green_histogram = green.histogram(255)
blue_histogram = blue.histogram(255)
plt.figure(1)
plt.subplot(411)
plt.plot(hist)
plt.subplot(412)
plt.plot(red_histogram)
plt.subplot(413)
plt.plot(green_histogram)
plt.subplot(414)
plt.plot(blue_histogram)
plt.show()
print("Ingresar parametro para binarizar: ")