本文整理汇总了Python中SimpleCV.Image.grayscale方法的典型用法代码示例。如果您正苦于以下问题:Python Image.grayscale方法的具体用法?Python Image.grayscale怎么用?Python Image.grayscale使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SimpleCV.Image
的用法示例。
在下文中一共展示了Image.grayscale方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: generate_negative_examples
# 需要导入模块: from SimpleCV import Image [as 别名]
# 或者: from SimpleCV.Image import grayscale [as 别名]
def generate_negative_examples(argv):
image_dirs = argv[4:]
images = []
for image_dir in image_dirs:
# grab all images
images.extend(glob(path.join(image_dir, '*.jpg')))
images.extend(glob(path.join(image_dir, '*.JPG')))
images.extend(glob(path.join(image_dir, '*.png')))
images.extend(glob(path.join(image_dir, '*.PNG')))
images = set(images)
if len(images) < N:
print 'Not enough images! (got %d, need %d)' % (len(images), N)
return
width, height, output_dir = int(argv[1]), int(argv[2]), argv[3]
if path.exists(output_dir) and (not path.isdir(output_dir)):
print '%s is not a directory' % output_dir
return
elif not path.exists(output_dir):
os.mkdir(output_dir)
for i in xrange(N):
print 'generating %3d/%d...' % ((i+1), N)
img = Image(images.pop())
img = img.grayscale()
if img.width > MAX_WIDTH:
img = img.resize(MAX_WIDTH, int(1.0*img.height*MAX_WIDTH/img.width))
x, y = random.randint(0, img.width-width), random.randint(0, img.height-height)
img = img.crop(x, y, width, height)
path_to_save = path.join(output_dir, '%d.png' % (i+1))
img.save(path_to_save)
示例2: Camera
# 需要导入模块: from SimpleCV import Image [as 别名]
# 或者: from SimpleCV.Image import grayscale [as 别名]
#! /usr/bin/python
#TODA LAS FOTOS DEBEN TENER EL MISMO TEXTO ESCRITO SOLO SE CAMBIARA LA SUPERFICI
#DEL TEXTO
from SimpleCV import Image, Camera, Display, time
import matplotlib.pyplot as plt
#cam = Camera()
#asdf=cam.getImage()
#time.sleep(10)
#prueba=cam.getImage()
#prueba.save("prueba1.jpg")
prueba=Image("prueba1.jpg")
escalagris=prueba.grayscale()
escalagris.save("gray.jpg")
histograma=escalagris.histogram(255)
plt.subplot(4,1,1)
plt.plot(histograma)
plt.grid()
plt.title("Histograma Grayscale cuadriculado")
#una vez echo el filtro en gris se procede a hacerlo en RGB(RED GREEn BLUE)
(red,green,blue)=prueba.splitChannels(False)
red_histogram=red.histogram(255)
plt.subplot(4,1,2)
plt.plot(red_histogram)
plt.grid()
plt.title("Histograma red")
green_histogram=green.histogram(255)
plt.subplot(4,1,3)
plt.plot(green_histogram)
plt.grid()
plt.title("Histograma green")
blue_histogram=blue.histogram(255)
示例3: Image
# 需要导入模块: from SimpleCV import Image [as 别名]
# 或者: from SimpleCV.Image import grayscale [as 别名]
#! /usr/bin/env python
from SimpleCV import Camera, Display, Image
import time
import matplotlib.pyplot as plt
# Fotos con letras
# Foto con fondo Cuadrada
imgc = Image('/home/pi/Documents/Fotos_cuadradas/Cuadraditos.png')
imgGrayc = imgc.grayscale()
imgGrayc.save('/home/pi/Documents/Fotos_cuadradas/Cuadraditogris.png')
plt.figure()
histc = imgGrayc.histogram(255)
plt.subplot(3,1,1)
plt.title("Cuadrados gris")
plt.stem(histc)
plt.yticks([])
plt.axis('tight')
# Foto con fondo Blanca
imgb = Image('/home/pi/Documents/Fotos_blancas/blanca.png')
imgGrayb = imgb.grayscale()
imgGrayb.save('/home/pi/Documents/Fotos_blancas/blancagris.png')
histb = imgGrayb.histogram(255)
plt.subplot(3,1,2)
plt.title("Blanca girs")
plt.stem(histb)
plt.yticks([])
示例4:
# 需要导入模块: from SimpleCV import Image [as 别名]
# 或者: from SimpleCV.Image import grayscale [as 别名]
from sklearn.cluster import KMeans
import time
import matplotlib.pyplot as plt
import numpy as np
from SimpleCV import Image,Camera,Display,Image,Color
img=Image("lunarr2.jpg")#importamos la imagen a la cual deseamos determinarle los bordes
foto=img.show()
#imagen en escala de grises
imgGray=img.grayscale()
imgGray.save("grayLab2.png")
hist=imgGray.histogram(255)
plt.figure(1)
plt.plot(hist)
plt.savefig("histogray.png")
#imagen en escala RGB
(red,green,blue)=img.splitChannels(False)
#Histograma imagen RGB
red_histogram=red.histogram(255)
plt.figure(2)
plt.plot(red_histogram)
示例5: Camera
# 需要导入模块: from SimpleCV import Image [as 别名]
# 或者: from SimpleCV.Image import grayscale [as 别名]
c = Camera()
def foto(c):
img = c.getImage()
img.show()
return img
#a=foto(c)
a=Image("hola42AGray.png")
imgGray=a.grayscale()
#imgGray.save("hola42AGray.png")
#a.save("holaA42.png")
def histograma(hist):
hist=hist.histogram(255)
## hist.save("hola4Hist.txt")
pylab.plot(hist)
pylab.draw()
pylab.pause(0.0001)
b=histograma(imgGray)
(R,G,B)=a.splitChannels(False)
示例6: Camera
# 需要导入模块: from SimpleCV import Image [as 别名]
# 或者: from SimpleCV.Image import grayscale [as 别名]
#! /usr/bin/env python
from SimpleCV import Image, Camera, Display, Image
import time
import matplotlib.pyplot as plt
cam = Camera()
img = cam.getImage()
img.save("cart.jpg")
imc = Image('cart.jpg')
imcGray = imc.grayscale()
imcGray.save('cartgris.jpg')
hist = imcGray.histogram(255)
plt.figure(1)
plt.stem(hist)
plt.axis('tight')
plt.savefig('hist.png')
示例7: Image
# 需要导入模块: from SimpleCV import Image [as 别名]
# 或者: from SimpleCV.Image import grayscale [as 别名]
from SimpleCV import Image
import cv2
import numpy as np
from sys import argv
if __name__ == "__main__":
image_file = argv[1]
# Load the Image
raw_image = Image(image_file)
# Remove color
gray_image = raw_image.grayscale()
# Smooth to remove speckle
smooth_image = gray_image.gaussianBlur((5,5),0)
# Convert to Numpy Array For OpenCV use
cv_image = smooth_image.getGrayNumpyCv2()
# Adaptive threshold does much better than linear
raw_thresh_image = cv2.adaptiveThreshold(cv_image,255,1,1,11,2)
# Convert back to a SimpleCV image
thresh_image = Image(raw_thresh_image)
# For some reason it gets rotated and flipped, reverse
thresh_image = thresh_image.rotate90().flipVertical()
# Find "blobs" which are interesting items in the image
blobs = thresh_image.findBlobs()
示例8: Image
# 需要导入模块: from SimpleCV import Image [as 别名]
# 或者: from SimpleCV.Image import grayscale [as 别名]
#!/usr/bin/python
from SimpleCV import Camera, Display, Image
img = Image("img4.png")
imggray = img.grayscale().save("img4gray.png")
imggray = Image("img4gray.png")
(red, green, blue) = img.splitChannels(False)
# Edge detection with diferents algorithms on SCV.
# "Edges" Command.
imggray_edge = imggray.edges().save("img4gray_edges.png")
red_edge = red.edges().save("img4red_edges.png")
green_edge = green.edges().save("img4green_edges.png")
blue_edge = blue.edges().save("img4blue_edges.png")
# "morphGradient" Command
imggray_edge = imggray.morphGradient().save("img4gray_edges_morphGradient.png")
red_edge = red.morphGradient().save("img4red_edges_morphGradient.png")
green_edge = green.morphGradient().save("img4green_edges_morphGradient.png")
blue_edge = blue.morphGradient().save("img4blue_edges_morphGradient.png")
# "sobel" Command
imggray_edge = imggray.sobel().save("img4gray_edges_sobel.png")
red_edge = red.sobel().save("img4red_edges_sobel.png")
green_edge = green.sobel().save("img4green_edges_sobel.png")
blue_edge = blue.sobel().save("img4blue_edges_sobel.png")
示例9: Camera
# 需要导入模块: from SimpleCV import Image [as 别名]
# 或者: from SimpleCV.Image import grayscale [as 别名]
#! /usr/bin/python
from SimpleCV import Image, Camera, Color #nueva libreria color para los comandos de color
#cam = Camera()
#img = cam.getImage()
#img.save("lunar1.jpg")
pruebalunar=Image("lunar6nico.png") #nombre de lka imagen que quieres cargar
lunargris=pruebalunar.grayscale()
lunargris.save("fotoslunarprurba.png")
(red,green,blue)=pruebalunar.splitChannels(False) # la separo en RGB
red.save("fotoenrojo.png")
green.save("fotoenverde.png")
blue.save("fotoenazul.png")
#codigo para encontrarn manchas solo se a echo en escala de grises
prueba69=green.binarize() #la binarizo por que se vera mejor asi
mancha=prueba69.findBlobs() #ocupo el comando para encontrar lasmanchas (lunares)
mancha.show(Color.YELLOW)
prueba69.save("porfavorguardate3.png")
invertidos=green.invert()#se invierte la imagen para obtener manchas negras en la foto
blob=invertidos.findBlobs()#se ve si se encuentrasn las mannchas en la foto invertida
blob.show(width=2)
pruebalunar.addDrawingLayer(invertidos.dl())
pruebalunar.show()
pruebalunar.save("porfavorguardate2.png") #guardamos la imagen
#enncontrar manchas por color especifico para el cual tenemos:
brown_distance=green.colorDistance(Color.BLACK).invert()##cmo buscamos de color negro , le pknemos black
blobs2_=brown_distance.findBlobs()
示例10: Camera
# 需要导入模块: from SimpleCV import Image [as 别名]
# 或者: from SimpleCV.Image import grayscale [as 别名]
#!/usr/bin/python
from SimpleCV import Camera, Display, Image
import matplotlib.pyplot as plt
import time
cam = Camera()
img = cam.getImage().save("img.jpg")
img = Image("img.jpg")
img.show()
imgGray = img.grayscale().save("imgGray.jpg")
imgGray = Image("imgGray.jpg")
imgGray.show()
hist = imgGray.histogram(255)
(red, green, blue) = img.splitChannels(False)
red_histogram = red.histogram(255)
green_histogram = green.histogram(255)
blue_histogram = blue.histogram(255)
plt.figure(1)
plt.subplot(411)
plt.plot(hist)
plt.subplot(412)
plt.plot(red_histogram)
plt.subplot(413)
plt.plot(green_histogram)
plt.subplot(414)
plt.plot(blue_histogram)
plt.show()
print("Ingresar parametro para binarizar: ")