本文整理汇总了C#中Vertices.getAABB方法的典型用法代码示例。如果您正苦于以下问题:C# Vertices.getAABB方法的具体用法?C# Vertices.getAABB怎么用?C# Vertices.getAABB使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Vertices
的用法示例。
在下文中一共展示了Vertices.getAABB方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: execute
/// <summary>
/// Implements "A new algorithm for Boolean operations on general polygons"
/// available here: http://liama.ia.ac.cn/wiki/_media/user:dong:dong_cg_05.pdf
/// Merges two polygons, a subject and a clip with the specified operation. Polygons may not be
/// self-intersecting.
///
/// Warning: May yield incorrect results or even crash if polygons contain collinear points.
/// </summary>
/// <param name="subject">The subject polygon.</param>
/// <param name="clip">The clip polygon, which is added,
/// substracted or intersected with the subject</param>
/// <param name="clipType">The operation to be performed. Either
/// Union, Difference or Intersection.</param>
/// <param name="error">The error generated (if any)</param>
/// <returns>A list of closed polygons, which make up the result of the clipping operation.
/// Outer contours are ordered counter clockwise, holes are ordered clockwise.</returns>
static List<Vertices> execute( Vertices subject, Vertices clip, PolyClipType clipType, out PolyClipError error )
{
Debug.Assert( subject.isSimple() && clip.isSimple(), "Non simple input! Input polygons must be simple (cannot intersect themselves)." );
// Copy polygons
Vertices slicedSubject;
Vertices slicedClip;
// Calculate the intersection and touch points between
// subject and clip and add them to both
calculateIntersections( subject, clip, out slicedSubject, out slicedClip );
// Translate polygons into upper right quadrant
// as the algorithm depends on it
Vector2 lbSubject = subject.getAABB().lowerBound;
Vector2 lbClip = clip.getAABB().lowerBound;
Vector2 translate;
Vector2.Min( ref lbSubject, ref lbClip, out translate );
translate = Vector2.One - translate;
if( translate != Vector2.Zero )
{
slicedSubject.translate( ref translate );
slicedClip.translate( ref translate );
}
// Enforce counterclockwise contours
slicedSubject.forceCounterClockWise();
slicedClip.forceCounterClockWise();
List<Edge> subjectSimplices;
List<float> subjectCoeff;
List<Edge> clipSimplices;
List<float> clipCoeff;
// Build simplical chains from the polygons and calculate the
// the corresponding coefficients
calculateSimplicalChain( slicedSubject, out subjectCoeff, out subjectSimplices );
calculateSimplicalChain( slicedClip, out clipCoeff, out clipSimplices );
List<Edge> resultSimplices;
// Determine the characteristics function for all non-original edges
// in subject and clip simplical chain and combine the edges contributing
// to the result, depending on the clipType
calculateResultChain( subjectCoeff, subjectSimplices, clipCoeff, clipSimplices, clipType,
out resultSimplices );
List<Vertices> result;
// Convert result chain back to polygon(s)
error = buildPolygonsFromChain( resultSimplices, out result );
// Reverse the polygon translation from the beginning
// and remove collinear points from output
translate *= -1f;
for( int i = 0; i < result.Count; ++i )
{
result[i].translate( ref translate );
SimplifyTools.collinearSimplify( result[i] );
}
return result;
}