本文整理汇总了C#中Orbit.Up方法的典型用法代码示例。如果您正苦于以下问题:C# Orbit.Up方法的具体用法?C# Orbit.Up怎么用?C# Orbit.Up使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Orbit
的用法示例。
在下文中一共展示了Orbit.Up方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: DeltaVToEllipticize
//Computes the deltaV of the burn needed to set a given PeR and ApR at at a given UT.
public static Vector3d DeltaVToEllipticize(Orbit o, double UT, double newPeR, double newApR)
{
double radius = o.Radius(UT);
//sanitize inputs
newPeR = MuUtils.Clamp(newPeR, 0 + 1, radius - 1);
newApR = Math.Max(newApR, radius + 1);
double GM = o.referenceBody.gravParameter;
double E = -GM / (newPeR + newApR); //total energy per unit mass of new orbit
double L = Math.Sqrt(Math.Abs((Math.Pow(E * (newApR - newPeR), 2) - GM * GM) / (2 * E))); //angular momentum per unit mass of new orbit
double kineticE = E + GM / radius; //kinetic energy (per unit mass) of new orbit at UT
double horizontalV = L / radius; //horizontal velocity of new orbit at UT
double verticalV = Math.Sqrt(Math.Abs(2 * kineticE - horizontalV * horizontalV)); //vertical velocity of new orbit at UT
Vector3d actualVelocity = o.SwappedOrbitalVelocityAtUT(UT);
//untested:
verticalV *= Math.Sign(Vector3d.Dot(o.Up(UT), actualVelocity));
Vector3d desiredVelocity = horizontalV * o.Horizontal(UT) + verticalV * o.Up(UT);
return desiredVelocity - actualVelocity;
}
示例2: DeltaVToChangeInclination
//Computes the delta-V of the burn required to change an orbit's inclination to a given value
//at a given UT. If the latitude at that time is too high, so that the desired inclination
//cannot be attained, the burn returned will achieve as low an inclination as possible (namely, inclination = latitude).
//The input inclination is in degrees.
//Note that there are two orbits through each point with a given inclination. The convention used is:
// - first, clamp newInclination to the range -180, 180
// - if newInclination > 0, do the cheaper burn to set that inclination
// - if newInclination < 0, do the more expensive burn to set that inclination
public static Vector3d DeltaVToChangeInclination(Orbit o, double UT, double newInclination)
{
double latitude = o.referenceBody.GetLatitude(o.SwappedAbsolutePositionAtUT(UT));
double desiredHeading = HeadingForInclination(newInclination, latitude);
Vector3d actualHorizontalVelocity = Vector3d.Exclude(o.Up(UT), o.SwappedOrbitalVelocityAtUT(UT));
Vector3d eastComponent = actualHorizontalVelocity.magnitude * Math.Sin(Math.PI / 180 * desiredHeading) * o.East(UT);
Vector3d northComponent = actualHorizontalVelocity.magnitude * Math.Cos(Math.PI / 180 * desiredHeading) * o.North(UT);
if (Vector3d.Dot(actualHorizontalVelocity, northComponent) < 0) northComponent *= -1;
if (MuUtils.ClampDegrees180(newInclination) < 0) northComponent *= -1;
Vector3d desiredHorizontalVelocity = eastComponent + northComponent;
return desiredHorizontalVelocity - actualHorizontalVelocity;
}
示例3: DeltaVAndTimeToMatchPlanesDescending
//Computes the delta-V and time of a burn to match planes with the target orbit. The output burnUT
//will be equal to the time of the first descending node with respect to the target after the given UT.
//Throws an ArgumentException if o is hyperbolic and doesn't have a descending node relative to the target.
public static Vector3d DeltaVAndTimeToMatchPlanesDescending(Orbit o, Orbit target, double UT, out double burnUT)
{
burnUT = o.TimeOfDescendingNode(target, UT);
Vector3d desiredHorizontal = Vector3d.Cross(target.SwappedOrbitNormal(), o.Up(burnUT));
Vector3d actualHorizontalVelocity = Vector3d.Exclude(o.Up(burnUT), o.SwappedOrbitalVelocityAtUT(burnUT));
Vector3d desiredHorizontalVelocity = actualHorizontalVelocity.magnitude * desiredHorizontal;
return desiredHorizontalVelocity - actualHorizontalVelocity;
}
示例4: FreefallEnded
//Freefall orbit ends when either
// - we enter the atmosphere, or
// - our vertical velocity is negative and either
// - we've landed or
// - the descent speed policy says to start braking
bool FreefallEnded(Orbit initialOrbit, double UT)
{
Vector3d pos = initialOrbit.SwappedRelativePositionAtUT(UT);
Vector3d surfaceVelocity = SurfaceVelocity(pos, initialOrbit.SwappedOrbitalVelocityAtUT(UT));
if (pos.magnitude < aerobrakedRadius) return true;
if (Vector3d.Dot(surfaceVelocity, initialOrbit.Up(UT)) > 0) return false;
if (pos.magnitude < landedRadius) return true;
if (descentSpeedPolicy != null && surfaceVelocity.magnitude > descentSpeedPolicy.MaxAllowedSpeed(pos, surfaceVelocity)) return true;
return false;
}
示例5: DeltaVToShiftLAN
//Computes the deltaV of the burn needed to set a given LAN at a given UT.
public static Vector3d DeltaVToShiftLAN(Orbit o, double UT, double newLAN)
{
Vector3d pos = o.SwappedAbsolutePositionAtUT(UT);
// Burn position in the same reference frame as LAN
double burn_latitude = o.referenceBody.GetLatitude(pos);
double burn_longitude = o.referenceBody.GetLongitude(pos) + o.referenceBody.rotationAngle;
const double target_latitude = 0; // Equator
double target_longitude = 0; // Prime Meridian
// Select the location of either the descending or ascending node.
// If the descending node is closer than the ascending node, or there is no ascending node, target the reverse of the newLAN
// Otherwise target the newLAN
if (o.AscendingNodeEquatorialExists() && o.DescendingNodeEquatorialExists())
{
if (o.TimeOfDescendingNodeEquatorial(UT) < o.TimeOfAscendingNodeEquatorial(UT))
{
// DN is closer than AN
// Burning for the AN would entail flipping the orbit around, and would be very expensive
// therefore, burn for the corresponding Longitude of the Descending Node
target_longitude = MuUtils.ClampDegrees360(newLAN + 180.0);
}
else
{
// DN is closer than AN
target_longitude = MuUtils.ClampDegrees360(newLAN);
}
}
else if (o.AscendingNodeEquatorialExists() && !o.DescendingNodeEquatorialExists())
{
// No DN
target_longitude = MuUtils.ClampDegrees360(newLAN);
}
else if (!o.AscendingNodeEquatorialExists() && o.DescendingNodeEquatorialExists())
{
// No AN
target_longitude = MuUtils.ClampDegrees360(newLAN + 180.0);
}
else
{
throw new ArgumentException("OrbitalManeuverCalculator.DeltaVToShiftLAN: No Equatorial Nodes");
}
double desiredHeading = MuUtils.ClampDegrees360(Heading(burn_latitude, burn_longitude, target_latitude, target_longitude));
Vector3d actualHorizontalVelocity = Vector3d.Exclude(o.Up(UT), o.SwappedOrbitalVelocityAtUT(UT));
Vector3d eastComponent = actualHorizontalVelocity.magnitude * Math.Sin(Math.PI / 180 * desiredHeading) * o.East(UT);
Vector3d northComponent = actualHorizontalVelocity.magnitude * Math.Cos(Math.PI / 180 * desiredHeading) * o.North(UT);
Vector3d desiredHorizontalVelocity = eastComponent + northComponent;
return desiredHorizontalVelocity - actualHorizontalVelocity;
}