当前位置: 首页>>代码示例>>C#>>正文


C# Orbit.TimeOfTrueAnomaly方法代码示例

本文整理汇总了C#中Orbit.TimeOfTrueAnomaly方法的典型用法代码示例。如果您正苦于以下问题:C# Orbit.TimeOfTrueAnomaly方法的具体用法?C# Orbit.TimeOfTrueAnomaly怎么用?C# Orbit.TimeOfTrueAnomaly使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Orbit的用法示例。


在下文中一共展示了Orbit.TimeOfTrueAnomaly方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: DrawOrbit

        public static void DrawOrbit(Orbit o, Color c)
        {
            List<Vector3d> points = new List<Vector3d>();
            if (o.eccentricity < 1)
            {
                //elliptical orbits:
                for (int trueAnomaly = 0; trueAnomaly < 360; trueAnomaly += 1)
                {
                    points.Add(o.SwappedAbsolutePositionAtUT(o.TimeOfTrueAnomaly(trueAnomaly, 0)));
                }
                points.Add(points[0]); //close the loop
            }
            else
            {
                //hyperbolic orbits:
                for (int meanAnomaly = -1000; meanAnomaly <= 1000; meanAnomaly += 5)
                {
                    points.Add(o.SwappedAbsolutePositionAtUT(o.UTAtMeanAnomaly(meanAnomaly * Math.PI / 180, 0)));
                }
            }

            DrawPath(o.referenceBody, points, c, false);
        }
开发者ID:KaiSforza,项目名称:MechJeb2,代码行数:23,代码来源:GLUtils.cs

示例2: DeltaVAndTimeForInterplanetaryTransferEjection

        //Computes the time and delta-V of an ejection burn to a Hohmann transfer from one planet to another.
        //It's assumed that the initial orbit around the first planet is circular, and that this orbit
        //is in the same plane as the orbit of the first planet around the sun. It's also assumed that
        //the target planet has a fairly low relative inclination with respect to the first planet. If the
        //inclination change is nonzero you should also do a mid-course correction burn, as computed by
        //DeltaVForCourseCorrection.
        public static Vector3d DeltaVAndTimeForInterplanetaryTransferEjection(Orbit o, double UT, Orbit target, bool syncPhaseAngle, out double burnUT)
        {
            Orbit planetOrbit = o.referenceBody.orbit;

            //Compute the time and dV for a Hohmann transfer where we pretend that we are the planet we are orbiting.
            //This gives us the "ideal" deltaV and UT of the ejection burn, if we didn't have to worry about waiting for the right
            //ejection angle and if we didn't have to worry about the planet's gravity dragging us back and increasing the required dV.
            double idealBurnUT;
            Vector3d idealDeltaV;

            if (syncPhaseAngle)
            {
                //time the ejection burn to intercept the target
                idealDeltaV = DeltaVAndTimeForHohmannTransfer(planetOrbit, target, UT, out idealBurnUT);
            }
            else
            {
                //don't time the ejection burn to intercept the target; we just care about the final peri/apoapsis
                idealBurnUT = UT;
                if (target.semiMajorAxis < planetOrbit.semiMajorAxis) idealDeltaV = DeltaVToChangePeriapsis(planetOrbit, idealBurnUT, target.semiMajorAxis);
                else idealDeltaV = DeltaVToChangeApoapsis(planetOrbit, idealBurnUT, target.semiMajorAxis);
            }

            //Compute the actual transfer orbit this ideal burn would lead to.
            Orbit transferOrbit = planetOrbit.PerturbedOrbit(idealBurnUT, idealDeltaV);

            //Now figure out how to approximately eject from our current orbit into the Hohmann orbit we just computed.

            //Assume we want to exit the SOI with the same velocity as the ideal transfer orbit at idealUT -- i.e., immediately
            //after the "ideal" burn we used to compute the transfer orbit. This isn't quite right.
            //We intend to eject from our planet at idealUT and only several hours later will we exit the SOI. Meanwhile
            //the transfer orbit will have acquired a slightly different velocity, which we should correct for. Maybe
            //just add in (1/2)(sun gravity)*(time to exit soi)^2 ? But how to compute time to exit soi? Or maybe once we
            //have the ejection orbit we should just move the ejection burn back by the time to exit the soi?
            Vector3d soiExitVelocity = idealDeltaV;

            //project the desired exit direction into the current orbit plane to get the feasible exit direction
            Vector3d inPlaneSoiExitDirection = Vector3d.Exclude(o.SwappedOrbitNormal(), soiExitVelocity).normalized;

            //compute the angle by which the trajectory turns between periapsis (where we do the ejection burn)
            //and SOI exit (approximated as radius = infinity)
            double soiExitEnergy = 0.5 * soiExitVelocity.sqrMagnitude - o.referenceBody.gravParameter / o.referenceBody.sphereOfInfluence;
            double ejectionRadius = o.semiMajorAxis; //a guess, good for nearly circular orbits

            double ejectionKineticEnergy = soiExitEnergy + o.referenceBody.gravParameter / ejectionRadius;
            double ejectionSpeed = Math.Sqrt(2 * ejectionKineticEnergy);

            //construct a sample ejection orbit
            Vector3d ejectionOrbitInitialVelocity = ejectionSpeed * (Vector3d)o.referenceBody.transform.right;
            Vector3d ejectionOrbitInitialPosition = o.referenceBody.position + ejectionRadius * (Vector3d)o.referenceBody.transform.up;
            Orbit sampleEjectionOrbit = MuUtils.OrbitFromStateVectors(ejectionOrbitInitialPosition, ejectionOrbitInitialVelocity, o.referenceBody, 0);
            double ejectionOrbitDuration = sampleEjectionOrbit.NextTimeOfRadius(0, o.referenceBody.sphereOfInfluence);
            Vector3d ejectionOrbitFinalVelocity = sampleEjectionOrbit.SwappedOrbitalVelocityAtUT(ejectionOrbitDuration);

            double turningAngle = Math.Abs(Vector3d.Angle(ejectionOrbitInitialVelocity, ejectionOrbitFinalVelocity));

            //rotate the exit direction by 90 + the turning angle to get a vector pointing to the spot in our orbit
            //where we should do the ejection burn. Then convert this to a true anomaly and compute the time closest
            //to planetUT at which we will pass through that true anomaly.
            Vector3d ejectionPointDirection = Quaternion.AngleAxis(-(float)(90 + turningAngle), o.SwappedOrbitNormal()) * inPlaneSoiExitDirection;
            double ejectionTrueAnomaly = o.TrueAnomalyFromVector(ejectionPointDirection);
            burnUT = o.TimeOfTrueAnomaly(ejectionTrueAnomaly, idealBurnUT - o.period);

            if ((idealBurnUT - burnUT > o.period / 2) || (burnUT < UT))
            {
                burnUT += o.period;
            }

            //rotate the exit direction by the turning angle to get a vector pointing to the spot in our orbit
            //where we should do the ejection burn
            Vector3d ejectionBurnDirection = Quaternion.AngleAxis(-(float)(turningAngle), o.SwappedOrbitNormal()) * inPlaneSoiExitDirection;
            Vector3d ejectionVelocity = ejectionSpeed * ejectionBurnDirection;

            Vector3d preEjectionVelocity = o.SwappedOrbitalVelocityAtUT(burnUT);

            return ejectionVelocity - preEjectionVelocity;
        }
开发者ID:Raf04,项目名称:MechJeb2,代码行数:83,代码来源:OrbitalManeuverCalculator.cs

示例3: DeltaVAndTimeForInterplanetaryLambertTransferEjection

        //Computes the time and delta-V of an ejection burn to a Hohmann transfer from one planet to another. 
        //It's assumed that the initial orbit around the first planet is circular, and that this orbit
        //is in the same plane as the orbit of the first planet around the sun. It's also assumed that
        //the target planet has a fairly low relative inclination with respect to the first planet. If the
        //inclination change is nonzero you should also do a mid-course correction burn, as computed by
        //DeltaVForCourseCorrection.
        public static Vector3d DeltaVAndTimeForInterplanetaryLambertTransferEjection(Orbit o, double UT, Orbit target, out double burnUT)
        {
            Orbit planetOrbit = o.referenceBody.orbit;

            //Compute the time and dV for a Hohmann transfer where we pretend that we are the planet we are orbiting.
            //This gives us the "ideal" deltaV and UT of the ejection burn, if we didn't have to worry about waiting for the right
            //ejection angle and if we didn't have to worry about the planet's gravity dragging us back and increasing the required dV.
            double idealBurnUT;
            Vector3d idealDeltaV;

            //time the ejection burn to intercept the target
            //idealDeltaV = DeltaVAndTimeForHohmannTransfer(planetOrbit, target, UT, out idealBurnUT);
            double vesselOrbitVelocity = OrbitalManeuverCalculator.CircularOrbitSpeed(o.referenceBody, o.semiMajorAxis);
            idealDeltaV = DeltaVAndTimeForHohmannLambertTransfer(planetOrbit, target, UT, out idealBurnUT, vesselOrbitVelocity);

            Debug.Log("idealBurnUT = " + idealBurnUT + ", idealDeltaV = " + idealDeltaV);

            //Compute the actual transfer orbit this ideal burn would lead to.
            Orbit transferOrbit = planetOrbit.PerturbedOrbit(idealBurnUT, idealDeltaV);

            //Now figure out how to approximately eject from our current orbit into the Hohmann orbit we just computed.

            //Assume we want to exit the SOI with the same velocity as the ideal transfer orbit at idealUT -- i.e., immediately
            //after the "ideal" burn we used to compute the transfer orbit. This isn't quite right. 
            //We intend to eject from our planet at idealUT and only several hours later will we exit the SOI. Meanwhile
            //the transfer orbit will have acquired a slightly different velocity, which we should correct for. Maybe
            //just add in (1/2)(sun gravity)*(time to exit soi)^2 ? But how to compute time to exit soi? Or maybe once we
            //have the ejection orbit we should just move the ejection burn back by the time to exit the soi?
            Vector3d soiExitVelocity = idealDeltaV;
            Debug.Log("soiExitVelocity = " + (Vector3)soiExitVelocity);

            //compute the angle by which the trajectory turns between periapsis (where we do the ejection burn) 
            //and SOI exit (approximated as radius = infinity)
            double soiExitEnergy = 0.5 * soiExitVelocity.sqrMagnitude - o.referenceBody.gravParameter / o.referenceBody.sphereOfInfluence;
            double ejectionRadius = o.semiMajorAxis; //a guess, good for nearly circular orbits
            Debug.Log("soiExitEnergy = " + soiExitEnergy);
            Debug.Log("ejectionRadius = " + ejectionRadius);

            double ejectionKineticEnergy = soiExitEnergy + o.referenceBody.gravParameter / ejectionRadius;
            double ejectionSpeed = Math.Sqrt(2 * ejectionKineticEnergy);
            Debug.Log("ejectionSpeed = " + ejectionSpeed);

            //construct a sample ejection orbit
            Vector3d ejectionOrbitInitialVelocity = ejectionSpeed * (Vector3d)o.referenceBody.transform.right;
            Vector3d ejectionOrbitInitialPosition = o.referenceBody.position + ejectionRadius * (Vector3d)o.referenceBody.transform.up;
            Orbit sampleEjectionOrbit = MuUtils.OrbitFromStateVectors(ejectionOrbitInitialPosition, ejectionOrbitInitialVelocity, o.referenceBody, 0);
            double ejectionOrbitDuration = sampleEjectionOrbit.NextTimeOfRadius(0, o.referenceBody.sphereOfInfluence);
            Vector3d ejectionOrbitFinalVelocity = sampleEjectionOrbit.SwappedOrbitalVelocityAtUT(ejectionOrbitDuration);

            double turningAngle = Vector3d.Angle(ejectionOrbitInitialVelocity, ejectionOrbitFinalVelocity);
            Debug.Log("turningAngle = " + turningAngle);

            //sine of the angle between the vessel orbit and the desired SOI exit velocity
            double outOfPlaneAngle = (Math.PI / 180) * (90 - Vector3d.Angle(soiExitVelocity, o.SwappedOrbitNormal()));
            Debug.Log("outOfPlaneAngle (rad) = " + outOfPlaneAngle);

            double coneAngle = Math.PI / 2 - (Math.PI / 180) * turningAngle;
            Debug.Log("coneAngle (rad) = " + coneAngle);

            Vector3d exitNormal = Vector3d.Cross(-soiExitVelocity, o.SwappedOrbitNormal()).normalized;
            Vector3d normal2 = Vector3d.Cross(exitNormal, -soiExitVelocity).normalized;

            //unit vector pointing to the spot on our orbit where we will burn.
            //fails if outOfPlaneAngle > coneAngle.
            Vector3d ejectionPointDirection = Math.Cos(coneAngle) * (-soiExitVelocity.normalized)
                + Math.Cos(coneAngle) * Math.Tan(outOfPlaneAngle) * normal2
                - Math.Sqrt(Math.Pow(Math.Sin(coneAngle), 2) - Math.Pow(Math.Cos(coneAngle) * Math.Tan(outOfPlaneAngle), 2)) * exitNormal;

            Debug.Log("soiExitVelocity = " + (Vector3)soiExitVelocity);
            Debug.Log("vessel orbit normal = " + (Vector3)(1000 * o.SwappedOrbitNormal()));
            Debug.Log("exitNormal = " + (Vector3)(1000 * exitNormal));
            Debug.Log("normal2 = " + (Vector3)(1000 * normal2));
            Debug.Log("ejectionPointDirection = " + ejectionPointDirection);


            double ejectionTrueAnomaly = o.TrueAnomalyFromVector(ejectionPointDirection);
            burnUT = o.TimeOfTrueAnomaly(ejectionTrueAnomaly, idealBurnUT - o.period);

            if ((idealBurnUT - burnUT > o.period / 2) || (burnUT < UT))
            {
                burnUT += o.period;
            }

            Vector3d ejectionOrbitNormal = Vector3d.Cross(ejectionPointDirection, soiExitVelocity).normalized;
            Debug.Log("ejectionOrbitNormal = " + ejectionOrbitNormal);
            Vector3d ejectionBurnDirection = Quaternion.AngleAxis(-(float)(turningAngle), ejectionOrbitNormal) * soiExitVelocity.normalized;
            Debug.Log("ejectionBurnDirection = " + ejectionBurnDirection);
            Vector3d ejectionVelocity = ejectionSpeed * ejectionBurnDirection;

            Vector3d preEjectionVelocity = o.SwappedOrbitalVelocityAtUT(burnUT);

            return ejectionVelocity - preEjectionVelocity;
        }
开发者ID:Kerbas-ad-astra,项目名称:MechJeb2,代码行数:99,代码来源:OrbitalManeuverCalculator.cs

示例4: DeltaVAndApsisPhaseAngleOfHohmannTransfer

        //Computes the dV of a Hohmann transfer burn at time UT that will put the apoapsis or periapsis
        //of the transfer orbit on top of the target orbit.
        //The output value apsisPhaseAngle is the phase angle between the transferring vessel and the
        //target object as the transferring vessel crosses the target orbit at the apoapsis or periapsis
        //of the transfer orbit.
        //Actually, it's not exactly the phase angle. It's a sort of mean anomaly phase angle. The
        //difference is not important for how this function is used by DeltaVAndTimeForHohmannTransfer.
        private static Vector3d DeltaVAndApsisPhaseAngleOfHohmannTransfer(Orbit o, Orbit target, double UT, out double apsisPhaseAngle)
        {
            Vector3d apsisDirection = -o.SwappedRelativePositionAtUT(UT);
            double desiredApsis = target.RadiusAtTrueAnomaly(MathExtensions.Deg2Rad * target.TrueAnomalyFromVector(apsisDirection));

            Vector3d dV;
            if (desiredApsis > o.ApR)
            {
                dV = DeltaVToChangeApoapsis(o, UT, desiredApsis);
                Orbit transferOrbit = o.PerturbedOrbit(UT, dV);
                double transferApTime = transferOrbit.NextApoapsisTime(UT);
                Vector3d transferApDirection = transferOrbit.SwappedRelativePositionAtApoapsis();  // getRelativePositionAtUT was returning NaNs! :(((((
                double targetTrueAnomaly = target.TrueAnomalyFromVector(transferApDirection);
                double meanAnomalyOffset = 360 * (target.TimeOfTrueAnomaly(targetTrueAnomaly, UT) - transferApTime) / target.period;
                apsisPhaseAngle = meanAnomalyOffset;
            }
            else
            {
                dV = DeltaVToChangePeriapsis(o, UT, desiredApsis);
                Orbit transferOrbit = o.PerturbedOrbit(UT, dV);
                double transferPeTime = transferOrbit.NextPeriapsisTime(UT);
                Vector3d transferPeDirection = transferOrbit.SwappedRelativePositionAtPeriapsis();  // getRelativePositionAtUT was returning NaNs! :(((((
                double targetTrueAnomaly = target.TrueAnomalyFromVector(transferPeDirection);
                double meanAnomalyOffset = 360 * (target.TimeOfTrueAnomaly(targetTrueAnomaly, UT) - transferPeTime) / target.period;
                apsisPhaseAngle = meanAnomalyOffset;
            }

            apsisPhaseAngle = MuUtils.ClampDegrees180(apsisPhaseAngle);

            return dV;
        }
开发者ID:Kerbas-ad-astra,项目名称:MechJeb2,代码行数:38,代码来源:OrbitalManeuverCalculator.cs


注:本文中的Orbit.TimeOfTrueAnomaly方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。