本文整理汇总了C++中vector3::z方法的典型用法代码示例。如果您正苦于以下问题:C++ vector3::z方法的具体用法?C++ vector3::z怎么用?C++ vector3::z使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类vector3
的用法示例。
在下文中一共展示了vector3::z方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1:
// Returns the cross product of two vectors
vector3 vector3::Cross(const vector3 &v2) const
{
vector3 r;
r.x() = (y() * v2.z()) - (z() * v2.y());
r.y() = (z() * v2.x()) - (x() * v2.z());
r.z() = (x() * v2.y()) - (y() * v2.x());
return r;
}
示例2: m
vector3 vector3::Transform(const vector3& v, const matrix& m)
{
vector3 result = vector3(
(v.x() * m(0,0)) + (v.x() * m(1,0)) + (v.x() * m(2,0)) + m(3,0),
(v.y() * m(0,1)) + (v.y() * m(1,1)) + (v.y() * m(2,1)) + m(3,1),
(v.z() * m(0,2)) + (v.z() * m(1,2)) + (v.z() * m(2,2) ) + m(3,2));
return result;
}
示例3: return
/*! Calculates the product m*v of the matrix m and the column
vector represented by v
*/
vector3 operator *(const matrix3x3 &m,const vector3 &v)
{
vector3 vv;
vv.x() = v.x()*m.ele[0][0] + v.y()*m.ele[0][1] + v.z()*m.ele[0][2];
vv.y() = v.x()*m.ele[1][0] + v.y()*m.ele[1][1] + v.z()*m.ele[1][2];
vv.z() = v.x()*m.ele[2][0] + v.y()*m.ele[2][1] + v.z()*m.ele[2][2];
return(vv);
}
示例4: CheckPoint
///
// CheckPoint()
//
// Test the point "alpha" of the way from P1 to P2
// See if it is on a face of the cube
// Consider only faces in "mask"
static
int CheckPoint(const vector3& p1, const vector3& p2, number alpha, long mask)
{
vector3 plane_point;
plane_point.x() = LERP(alpha, p1.x(), p2.x());
plane_point.y() = LERP(alpha, p1.y(), p2.y());
plane_point.z() = LERP(alpha, p1.z(), p2.z());
return(FacePlane(plane_point) & mask);
}
示例5: transformedFractionalCoordinate
vector3 transformedFractionalCoordinate(vector3 originalCoordinate)
{
// ensure the fractional coordinate is entirely within the unit cell
vector3 returnValue(originalCoordinate);
// So if we have -2.08, we take -2.08 - (-2) = -0.08 .... exactly what we want
returnValue.SetX(originalCoordinate.x() - static_cast<int>(originalCoordinate.x()));
returnValue.SetY(originalCoordinate.y() - static_cast<int>(originalCoordinate.y()));
returnValue.SetZ(originalCoordinate.z() - static_cast<int>(originalCoordinate.z()));
return returnValue;
}
示例6: Bevel3d
///
// Bevel3d()
//
// Which of the eight corner plane(s) is point P outside of?
//
static
int Bevel3d(const vector3& p)
{
int outcode;
outcode = 0;
if (( p.x() + p.y() + p.z()) > 1.5) outcode |= 0x01;
if (( p.x() + p.y() - p.z()) > 1.5) outcode |= 0x02;
if (( p.x() - p.y() + p.z()) > 1.5) outcode |= 0x04;
if (( p.x() - p.y() - p.z()) > 1.5) outcode |= 0x08;
if ((-p.x() + p.y() + p.z()) > 1.5) outcode |= 0x10;
if ((-p.x() + p.y() - p.z()) > 1.5) outcode |= 0x20;
if ((-p.x() - p.y() + p.z()) > 1.5) outcode |= 0x40;
if ((-p.x() - p.y() - p.z()) > 1.5) outcode |= 0x80;
return(outcode);
}
示例7: translation_matrix
matrix4x4 translation_matrix(vector3 const& v)
{
return matrix4x4 (1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
v.x(), v.y(), v.z(), 1);
}
示例8: PointTriangleIntersection
///
// PointTriangleIntersection()
//
// Test if 3D point is inside 3D triangle
static
int PointTriangleIntersection(const vector3& p, const TRI& t)
{
int sign12,sign23,sign31;
vector3 vect12,vect23,vect31,vect1h,vect2h,vect3h;
vector3 cross12_1p,cross23_2p,cross31_3p;
///
// First, a quick bounding-box test:
// If P is outside triangle bbox, there cannot be an intersection.
//
if (p.x() > MAX3(t.m_P[0].x(), t.m_P[1].x(), t.m_P[2].x())) return(OUTSIDE);
if (p.y() > MAX3(t.m_P[0].y(), t.m_P[1].y(), t.m_P[2].y())) return(OUTSIDE);
if (p.z() > MAX3(t.m_P[0].z(), t.m_P[1].z(), t.m_P[2].z())) return(OUTSIDE);
if (p.x() < MIN3(t.m_P[0].x(), t.m_P[1].x(), t.m_P[2].x())) return(OUTSIDE);
if (p.y() < MIN3(t.m_P[0].y(), t.m_P[1].y(), t.m_P[2].y())) return(OUTSIDE);
if (p.z() < MIN3(t.m_P[0].z(), t.m_P[1].z(), t.m_P[2].z())) return(OUTSIDE);
///
// For each triangle side, make a vector out of it by subtracting vertexes;
// make another vector from one vertex to point P.
// The crossproduct of these two vectors is orthogonal to both and the
// signs of its X,Y,Z components indicate whether P was to the inside or
// to the outside of this triangle side.
//
SUB(t.m_P[0], t.m_P[1], vect12);
SUB(t.m_P[0], p, vect1h);
CROSS(vect12, vect1h, cross12_1p)
sign12 = SIGN3(cross12_1p); /* Extract X,Y,Z signs as 0..7 or 0...63 integer */
SUB(t.m_P[1], t.m_P[2], vect23)
SUB(t.m_P[1], p, vect2h);
CROSS(vect23, vect2h, cross23_2p)
sign23 = SIGN3(cross23_2p);
SUB(t.m_P[2], t.m_P[0], vect31)
SUB(t.m_P[2], p, vect3h);
CROSS(vect31, vect3h, cross31_3p)
sign31 = SIGN3(cross31_3p);
///
// If all three crossproduct vectors agree in their component signs, /
// then the point must be inside all three.
// P cannot be OUTSIDE all three sides simultaneously.
//
return (((sign12 & sign23 & sign31) == 0) ? OUTSIDE : INSIDE);
}
示例9: x
const vector3 vector3::operator / (const vector3 &v2) const
{
vector3 r;
r.x() = x() / v2.x();
r.y() = y() / v2.y();
r.z() = z() / v2.z();
return r;
}
示例10: returnValue
// Helper function -- transform fractional coordinates to ensure they lie in the unit cell
//
// Copied from generic.cpp - should be defined in some header ? vector.h ?
vector3 transformedFractionalCoordinate2(vector3 originalCoordinate)
{
// ensure the fractional coordinate is entirely within the unit cell
vector3 returnValue(originalCoordinate);
// So if we have -2.08, we take -2.08 - (-2) = -0.08 .... almost what we want
returnValue.SetX(originalCoordinate.x() - int(originalCoordinate.x()) );
returnValue.SetY(originalCoordinate.y() - int(originalCoordinate.y()) );
returnValue.SetZ(originalCoordinate.z() - int(originalCoordinate.z()) );
if (returnValue.x() < 0.0)
returnValue.SetX(returnValue.x() + 1.0);
if (returnValue.y() < 0.0)
returnValue.SetY(returnValue.y() + 1.0);
if (returnValue.z() < 0.0)
returnValue.SetZ(returnValue.z() + 1.0);
return returnValue;
}
示例11: Bevel2d
///
// Bevel2d()
//
// Which of the twelve edge plane(s) is point P outside of?
//
static
int Bevel2d(const vector3& p)
{
int outcode;
outcode = 0;
if ( p.x() + p.y() > 1.0) outcode |= 0x001;
if ( p.x() - p.y() > 1.0) outcode |= 0x002;
if (-p.x() + p.y() > 1.0) outcode |= 0x004;
if (-p.x() - p.y() > 1.0) outcode |= 0x008;
if ( p.x() + p.z() > 1.0) outcode |= 0x010;
if ( p.x() - p.z() > 1.0) outcode |= 0x020;
if (-p.x() + p.z() > 1.0) outcode |= 0x040;
if (-p.x() - p.z() > 1.0) outcode |= 0x080;
if ( p.y() + p.z() > 1.0) outcode |= 0x100;
if ( p.y() - p.z() > 1.0) outcode |= 0x200;
if (-p.y() + p.z() > 1.0) outcode |= 0x400;
if (-p.y() - p.z() > 1.0) outcode |= 0x800;
return(outcode);
}
示例12: FacePlane
///
// FacePlane()
//
// Which of the six face-plane(s) is point P outside of?
//
static
int FacePlane(const vector3& p)
{
int outcode;
outcode = 0;
if (p.x() > .5) outcode |= 0x01;
if (p.x() < -.5) outcode |= 0x02;
if (p.y() > .5) outcode |= 0x04;
if (p.y() < -.5) outcode |= 0x08;
if (p.z() > .5) outcode |= 0x10;
if (p.z() < -.5) outcode |= 0x20;
return(outcode);
}
示例13: rotation_quat
quat rotation_quat(vector3 const& axe, real const& angle )
{
// create (sin(a/2)*axis, cos(a/2)) quaternion
// which rotates the point a radians around "axis"
quat res;
vector4 u = vector4(axe.x(), axe.y(), axe.z(), 0); u.normalize();
real sina2 = sin(angle/2);
real cosa2 = cos(angle/2);
res.qx() = sina2 * u.x();
res.qy() = sina2 * u.y();
res.qz() = sina2 * u.z();
res.qw() = cosa2;
return res;
}
示例14: CalculateNormalNoNormalize
int CalculateNormalNoNormalize(vector3& vNormOut, Grid& grid, Edge* e,
Grid::VertexAttachmentAccessor<APosition>& aaPos,
Grid::FaceAttachmentAccessor<ANormal>* paaNormFACE)
{
Face* f[2];
int numFaces = GetAssociatedFaces(f, grid, e, 2);
switch(numFaces){
case 0:{ // if there are no associated faces.
// we'll assume that the edge lies in the xy plane and return its normal
vector3 dir;
VecSubtract(dir, aaPos[e->vertex(1)], aaPos[e->vertex(0)]);
vNormOut.x() = dir.y();
vNormOut.y() = -dir.x();
vNormOut.z() = 0;
}break;
case 1: // if there is one face, the normal will be set to the faces normal
if(paaNormFACE)
vNormOut = (*paaNormFACE)[f[0]];
else{
CalculateNormalNoNormalize(vNormOut, f[0], aaPos);
}
break;
default: // there are at least 2 associated faces
if(paaNormFACE)
VecAdd(vNormOut, (*paaNormFACE)[f[0]], (*paaNormFACE)[f[1]]);
else{
vector3 fn0, fn1;
CalculateNormalNoNormalize(fn0, f[0], aaPos);
CalculateNormalNoNormalize(fn1, f[1], aaPos);
VecAdd(vNormOut, fn0, fn1);
VecScale(vNormOut, vNormOut, 0.5);
}
VecNormalize(vNormOut, vNormOut);
break;
}
return numFaces;
}
示例15: er
void matrix3x3::SetRow(int row, const vector3 &v)
#ifdef OB_OLD_MATH_CHECKS
throw(OBError)
#endif
{
#ifdef OB_OLD_MATH_CHECKS
if (row > 2)
{
OBError er("matrix3x3::SetRow(int row, const vector3 &v)",
"The method was called with row > 2.",
"This is a programming error in your application.");
throw er;
}
#endif
ele[row][0] = v.x();
ele[row][1] = v.y();
ele[row][2] = v.z();
}