本文整理汇总了C++中Zone::SetBoundingBox方法的典型用法代码示例。如果您正苦于以下问题:C++ Zone::SetBoundingBox方法的具体用法?C++ Zone::SetBoundingBox怎么用?C++ Zone::SetBoundingBox使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Zone
的用法示例。
在下文中一共展示了Zone::SetBoundingBox方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: CreateScene
void RTTScene::CreateScene()
{
rttScene_ = new Scene(context_);
rttScene_->CreateComponent<Octree>();
Node* zoneNode = rttScene_->CreateChild("Zone");
Zone* zone = zoneNode->CreateComponent<Zone>();
zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
zone->SetAmbientColor(Color(0.05f, 0.1f, 0.15f));
zone->SetFogColor(Color(0.1f, 0.2f, 0.3f));
zone->SetFogStart(10.0f);
zone->SetFogEnd(100.0f);
//用来指定ViewPort时的定位
rttCameraNode_ = rttScene_->CreateChild("Camera");
Camera* camera = rttCameraNode_->CreateComponent<Camera>();
Light* light = rttCameraNode_->CreateComponent<Light>();
light->SetLightType(LIGHT_POINT);
renderTexture = new Texture2D(context_);
//设置当前场景的ViewPort
renderTexture->SetSize(_width,_height,Graphics::GetRGBFormat(),TEXTURE_RENDERTARGET);
RenderSurface* surface = renderTexture->GetRenderSurface();
renderTexture->SetFilterMode(FILTER_BILINEAR);
Viewport* rttViewPort = new Viewport(context_,rttScene_,camera);
surface->SetViewport(0,rttViewPort);
}
示例2: CreateScene
void SceneReplication::CreateScene()
{
scene_ = new Scene(context_);
// Create scene content on the server only
ResourceCache* cache = GetSubsystem<ResourceCache>();
// Create octree and physics world with default settings. Create them as local so that they are not needlessly replicated
// when a client connects
scene_->CreateComponent<Octree>(LOCAL);
scene_->CreateComponent<PhysicsWorld>(LOCAL);
// All static scene content and the camera are also created as local, so that they are unaffected by scene replication and are
// not removed from the client upon connection. Create a Zone component first for ambient lighting & fog control.
Node* zoneNode = scene_->CreateChild("Zone", LOCAL);
Zone* zone = zoneNode->CreateComponent<Zone>();
zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
zone->SetAmbientColor(Color(0.1f, 0.1f, 0.1f));
zone->SetFogStart(100.0f);
zone->SetFogEnd(300.0f);
// Create a directional light without shadows
Node* lightNode = scene_->CreateChild("DirectionalLight", LOCAL);
lightNode->SetDirection(Vector3(0.5f, -1.0f, 0.5f));
Light* light = lightNode->CreateComponent<Light>();
light->SetLightType(LIGHT_DIRECTIONAL);
light->SetColor(Color(0.2f, 0.2f, 0.2f));
light->SetSpecularIntensity(1.0f);
// Create a "floor" consisting of several tiles. Make the tiles physical but leave small cracks between them
for (int y = -20; y <= 20; ++y)
{
for (int x = -20; x <= 20; ++x)
{
Node* floorNode = scene_->CreateChild("FloorTile", LOCAL);
floorNode->SetPosition(Vector3(x * 20.2f, -0.5f, y * 20.2f));
floorNode->SetScale(Vector3(20.0f, 1.0f, 20.0f));
StaticModel* floorObject = floorNode->CreateComponent<StaticModel>();
floorObject->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
floorObject->SetMaterial(cache->GetResource<Material>("Materials/Stone.xml"));
RigidBody* body = floorNode->CreateComponent<RigidBody>();
body->SetFriction(1.0f);
CollisionShape* shape = floorNode->CreateComponent<CollisionShape>();
shape->SetBox(Vector3::ONE);
}
}
// Create the camera. Limit far clip distance to match the fog
// The camera needs to be created into a local node so that each client can retain its own camera, that is unaffected by
// network messages. Furthermore, because the client removes all replicated scene nodes when connecting to a server scene,
// the screen would become blank if the camera node was replicated (as only the locally created camera is assigned to a
// viewport in SetupViewports() below)
cameraNode_ = scene_->CreateChild("Camera", LOCAL);
Camera* camera = cameraNode_->CreateComponent<Camera>();
camera->SetFarClip(300.0f);
// Set an initial position for the camera scene node above the plane
cameraNode_->SetPosition(Vector3(0.0f, 5.0f, 0.0f));
}
示例3: CreateScene
void LuaIntegration::CreateScene()
{
ResourceCache* cache = GetSubsystem<ResourceCache>();
scene_ = new Scene(context_);
// Create the Octree component to the scene so that drawable objects can be rendered. Use default volume
// (-1000, -1000, -1000) to (1000, 1000, 1000)
scene_->CreateComponent<Octree>();
// Create a Zone component into a child scene node. The Zone controls ambient lighting and fog settings. Like the Octree,
// it also defines its volume with a bounding box, but can be rotated (so it does not need to be aligned to the world X, Y
// and Z axes.) Drawable objects "pick up" the zone they belong to and use it when rendering; several zones can exist
Node* zoneNode = scene_->CreateChild("Zone");
Zone* zone = zoneNode->CreateComponent<Zone>();
// Set same volume as the Octree, set a close bluish fog and some ambient light
zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
zone->SetAmbientColor(Color(0.05f, 0.1f, 0.15f));
zone->SetFogColor(Color(0.1f, 0.2f, 0.3f));
zone->SetFogStart(10.0f);
zone->SetFogEnd(100.0f);
// Create randomly positioned and oriented box StaticModels in the scene
const unsigned NUM_OBJECTS = 2000;
for (unsigned i = 0; i < NUM_OBJECTS; ++i)
{
Node* boxNode = scene_->CreateChild("Box");
boxNode->SetPosition(Vector3(Random(200.0f) - 100.0f, Random(200.0f) - 100.0f, Random(200.0f) - 100.0f));
// Orient using random pitch, yaw and roll Euler angles
boxNode->SetRotation(Quaternion(Random(360.0f), Random(360.0f), Random(360.0f)));
StaticModel* boxObject = boxNode->CreateComponent<StaticModel>();
boxObject->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
boxObject->SetMaterial(cache->GetResource<Material>("Materials/Stone.xml"));
// Add our custom Rotator script object (using the LuaScriptInstance C++ component to instantiate / store it) which will
// rotate the scene node each frame, when the scene sends its update event
LuaScriptInstance* instance = boxNode->CreateComponent<LuaScriptInstance>();
instance->CreateObject("LuaScripts/Rotator.lua", "Rotator");
// Call the script object's "SetRotationSpeed" function.
WeakPtr<LuaFunction> function = instance->GetScriptObjectFunction("SetRotationSpeed");
if (function && function->BeginCall(instance))
{
function->PushUserType(Vector3(10.0f, 20.0f, 30.0f), "Vector3");
function->EndCall();
}
}
// Create the camera. Let the starting position be at the world origin. As the fog limits maximum visible distance, we can
// bring the far clip plane closer for more effective culling of distant objects
cameraNode_ = scene_->CreateChild("Camera");
Camera* camera = cameraNode_->CreateComponent<Camera>();
camera->SetFarClip(100.0f);
// Create a point light to the camera scene node
Light* light = cameraNode_->CreateComponent<Light>();
light->SetLightType(LIGHT_POINT);
light->SetRange(30.0f);
}
示例4: CreateScene
void Labyrinth::CreateScene()
{
// ADDED
ResourceCache* cache = GetSubsystem<ResourceCache>();
scene_ = new Scene(context_);
// TODO vzdialenost kamery podla rozlisenia obrazovky
// Create scene subsystem components
scene_->CreateComponent<Octree>();
scene_->CreateComponent<PhysicsWorld>();
scene_->CreateComponent<DebugRenderer>();
// Create camera and define viewport. We will be doing load / save, so it's convenient to create the camera outside the scene,
// so that it won't be destroyed and recreated, and we don't have to redefine the viewport on load
// TODO treb vytunit poziciu kamery a jej rotaciu
cameraNode_ = new Node(context_);
cameraNode_->SetName("cameraNode");
Camera* camera = cameraNode_->CreateComponent<Camera>();
camera->SetFarClip(300.0f);
// aby to vyzeralo ako 2.5D treba prepnut ortho na true
/*camera->SetOrthographic(false);
cameraNode_->SetPosition(Vector3(10, 90, 10));
cameraNode_->SetRotation(Quaternion(75, 0, 0));
GetSubsystem<Renderer>()->SetViewport(0, new Viewport(context_, scene_, camera));*/
camera->SetOrthographic(false);
cameraNode_->SetPosition(Vector3(0, 10, 0));
cameraNode_->SetRotation(Quaternion(90, 0, 0));
// Create static scene content. First create a zone for ambient lightning and fog control
Node* zoneNode = scene_->CreateChild("Zone");
Zone* zone = zoneNode->CreateComponent<Zone>();
zone->SetAmbientColor(Color(0.15f, 0.15f, 0.15f));
zone->SetFogColor(Color(0.5f, 0.5f, 0.7f));
zone->SetFogStart(1000.0f);
zone->SetFogEnd(1000.0f);
zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
// Create a directional light with cascaded shadow mapping
Node* lightNode = scene_->CreateChild("DirectionalLight");
lightNode->SetDirection(Vector3(0.3f, -0.5f, 0.425f));
Light* light = lightNode->CreateComponent<Light>();
light->SetLightType(LIGHT_DIRECTIONAL);
light->SetCastShadows(true);
light->SetShadowBias(BiasParameters(0.00025f, 0.5f));
light->SetShadowCascade(CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f));
light->SetSpecularIntensity(1.0f);
// ------------------------------------------
CreateFloor(20, 14);
}
示例5: CreateScene
void AnimatingScene::CreateScene()
{
ResourceCache* cache = GetSubsystem<ResourceCache>();
scene_ = new Scene(context_);
// Create the Octree component to the scene so that drawable objects can be rendered. Use default volume
// (-1000, -1000, -1000) to (1000, 1000, 1000)
scene_->CreateComponent<Octree>();
// Create a Zone component into a child scene node. The Zone controls ambient lighting and fog settings. Like the Octree,
// it also defines its volume with a bounding box, but can be rotated (so it does not need to be aligned to the world X, Y
// and Z axes.) Drawable objects "pick up" the zone they belong to and use it when rendering; several zones can exist
Node* zoneNode = scene_->CreateChild("Zone");
Zone* zone = zoneNode->CreateComponent<Zone>();
// Set same volume as the Octree, set a close bluish fog and some ambient light
zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
zone->SetAmbientColor(Color(0.05f, 0.1f, 0.15f));
zone->SetFogColor(Color(0.1f, 0.2f, 0.3f));
zone->SetFogStart(10.0f);
zone->SetFogEnd(100.0f);
// Create randomly positioned and oriented box StaticModels in the scene
const unsigned NUM_OBJECTS = 2000;
for (unsigned i = 0; i < NUM_OBJECTS; ++i)
{
Node* boxNode = scene_->CreateChild("Box");
boxNode->SetPosition(Vector3(Random(200.0f) - 100.0f, Random(200.0f) - 100.0f, Random(200.0f) - 100.0f));
// Orient using random pitch, yaw and roll Euler angles
boxNode->SetRotation(Quaternion(Random(360.0f), Random(360.0f), Random(360.0f)));
StaticModel* boxObject = boxNode->CreateComponent<StaticModel>();
boxObject->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
boxObject->SetMaterial(cache->GetResource<Material>("Materials/Stone.xml"));
// Add our custom Rotator component which will rotate the scene node each frame, when the scene sends its update event.
// The Rotator component derives from the base class LogicComponent, which has convenience functionality to subscribe
// to the various update events, and forward them to virtual functions that can be implemented by subclasses. This way
// writing logic/update components in C++ becomes similar to scripting.
// Now we simply set same rotation speed for all objects
Rotator* rotator = boxNode->CreateComponent<Rotator>();
rotator->SetRotationSpeed(Vector3(10.0f, 20.0f, 30.0f));
}
// Create the camera. Let the starting position be at the world origin. As the fog limits maximum visible distance, we can
// bring the far clip plane closer for more effective culling of distant objects
cameraNode_ = scene_->CreateChild("Camera");
Camera* camera = cameraNode_->CreateComponent<Camera>();
camera->SetFarClip(100.0f);
// Create a point light to the camera scene node
Light* light = cameraNode_->CreateComponent<Light>();
light->SetLightType(LIGHT_POINT);
light->SetRange(30.0f);
}
示例6: CreateScene
void Sample::CreateScene()
{
ResourceCache* cache = GetSubsystem<ResourceCache>();
scene_ = new Scene(context_);
sceneHierarchyWindow_->SetScene(scene_);
// Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
// Also create a DebugRenderer component so that we can draw debug geometry
scene_->CreateComponent<Octree>();
scene_->CreateComponent<DebugRenderer>();
// Create a Zone component for ambient lighting & fog control
Node* zoneNode = scene_->CreateChild("Zone");
Zone* zone = zoneNode->CreateComponent<Zone>();
zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
zone->SetAmbientColor(Color(0.5f, 0.5f, 0.5f));
zone->SetFogStart(100.0f);
zone->SetFogEnd(300.0f);
// Create a directional light without shadows
Node* lightNode = scene_->CreateChild("DirectionalLight");
lightNode->SetDirection(Vector3(0.5f, -1.0f, 0.5f));
Light* light = lightNode->CreateComponent<Light>();
light->SetLightType(LIGHT_DIRECTIONAL);
light->SetColor(Color(0.2f, 0.2f, 0.2f));
light->SetSpecularIntensity(1.0f);
// Create a "floor" consisting of several tiles
for (int y = -5; y <= 5; ++y)
{
for (int x = -5; x <= 5; ++x)
{
Node* floorNode = scene_->CreateChild("FloorTile");
floorNode->SetPosition(Vector3(x * 20.5f, -0.5f, y * 20.5f));
floorNode->SetScale(Vector3(20.0f, 1.0f, 20.f));
StaticModel* floorObject = floorNode->CreateComponent<StaticModel>();
floorObject->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
floorObject->SetMaterial(cache->GetResource<Material>("Materials/Stone.xml"));
}
}
// Create the camera. Limit far clip distance to match the fog
camNode_ = scene_->CreateChild("Camera");
Camera* camera = camNode_->CreateComponent<Camera>();
camera->SetFarClip(1300.0f);
// Set an initial position for the camera scene node above the plane
camNode_->SetPosition(Vector3(0.0f, 5.0f, 0.0f));
}
示例7: SetupScreenUI
/// Setup the screen UI
void GameEconomicGameClient::SetupScreenUI(void)
{
/// Create a new scene UI
scenePlayerUI_= new Scene(context_);
scenePlayerUI_-> CreateComponent<Octree>();
scenePlayerUI_-> CreateComponent<DebugRenderer>();
/// Add a lightdelightNode
Node* lightNode = scenePlayerUI_->CreateChild("uidirectionallight");
lightNode->SetDirection(Vector3(0.0f, .8f, 3.20f)); /// The direction vector does not need to be normalized
Light* light = lightNode->CreateComponent<Light>();
light->SetLightType(LIGHT_DIRECTIONAL);
/// Create a Zone component for ambient lighting & fog control
Node* zoneNode = scenePlayerUI_->CreateChild("uizone");
Zone* zone = zoneNode->CreateComponent<Zone>();
Vector3 boundingBoxMin(-20.0f,-20.0f,-20.0f);
Vector3 boundingBoxMax(20.0f,20.0f,20.0f);
/// change bounding box to something more accurate
zone->SetBoundingBox(BoundingBox(boundingBoxMin,boundingBoxMax));
zone->SetFogColor(Color(.08f, .08f, .08f));
zone->SetFogStart(10.0f);
zone->SetFogEnd(20.0f);
zone->SetHeightFog (false);
/// Add Camera
Node * cameraNodePlayerUI_ = scenePlayerUI_->CreateChild("uicamera");
cameraNodePlayerUI_->CreateComponent<Camera>();
/// Set an initial position for the camera scene node above the plane
cameraNodePlayerUI_->SetPosition(Vector3(0.0f, 0.8f, 3.0f));
Node * emptyNode= scenePlayerUI_->CreateChild("uiempty");
emptyNode->SetPosition(Vector3(0.0f,0.73f,0.0f));
/// Create character node;
Node * characterNode= scenePlayerUI_->CreateChild("Character");
characterNode->SetPosition(Vector3(0.0f,0.0f,0.0f));
cameraNodePlayerUI_ -> LookAt(Vector3(emptyNode->GetPosition()));
lightNode -> Rotate(Quaternion(.398377,0.854323,0.141073,-0.302532));
}
示例8: CreateScene
void MultipleViewports::CreateScene()
{
ResourceCache* cache = GetSubsystem<ResourceCache>();
scene_ = new Scene(context_);
// Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
// Also create a DebugRenderer component so that we can draw debug geometry
scene_->CreateComponent<Octree>();
scene_->CreateComponent<DebugRenderer>();
// Create scene node & StaticModel component for showing a static plane
Node* planeNode = scene_->CreateChild("Plane");
planeNode->SetScale(Vector3(100.0f, 1.0f, 100.0f));
StaticModel* planeObject = planeNode->CreateComponent<StaticModel>();
planeObject->SetModel(cache->GetResource<Model>("Models/Plane.mdl"));
planeObject->SetMaterial(cache->GetResource<Material>("Materials/StoneTiled.xml"));
// Create a Zone component for ambient lighting & fog control
Node* zoneNode = scene_->CreateChild("Zone");
Zone* zone = zoneNode->CreateComponent<Zone>();
zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
zone->SetAmbientColor(Color(0.15f, 0.15f, 0.15f));
zone->SetFogColor(Color(0.5f, 0.5f, 0.7f));
zone->SetFogStart(100.0f);
zone->SetFogEnd(300.0f);
// Create a directional light to the world. Enable cascaded shadows on it
Node* lightNode = scene_->CreateChild("DirectionalLight");
lightNode->SetDirection(Vector3(0.6f, -1.0f, 0.8f));
Light* light = lightNode->CreateComponent<Light>();
light->SetLightType(LIGHT_DIRECTIONAL);
light->SetCastShadows(true);
light->SetShadowBias(BiasParameters(0.00025f, 0.5f));
// Set cascade splits at 10, 50 and 200 world units, fade shadows out at 80% of maximum shadow distance
light->SetShadowCascade(CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f));
// Create some mushrooms
const unsigned NUM_MUSHROOMS = 240;
for (unsigned i = 0; i < NUM_MUSHROOMS; ++i)
{
Node* mushroomNode = scene_->CreateChild("Mushroom");
mushroomNode->SetPosition(Vector3(Random(90.0f) - 45.0f, 0.0f, Random(90.0f) - 45.0f));
mushroomNode->SetRotation(Quaternion(0.0f, Random(360.0f), 0.0f));
mushroomNode->SetScale(0.5f + Random(2.0f));
StaticModel* mushroomObject = mushroomNode->CreateComponent<StaticModel>();
mushroomObject->SetModel(cache->GetResource<Model>("Models/Mushroom.mdl"));
mushroomObject->SetMaterial(cache->GetResource<Material>("Materials/Mushroom.xml"));
mushroomObject->SetCastShadows(true);
}
// Create randomly sized boxes. If boxes are big enough, make them occluders
const unsigned NUM_BOXES = 20;
for (unsigned i = 0; i < NUM_BOXES; ++i)
{
Node* boxNode = scene_->CreateChild("Box");
float size = 1.0f + Random(10.0f);
boxNode->SetPosition(Vector3(Random(80.0f) - 40.0f, size * 0.5f, Random(80.0f) - 40.0f));
boxNode->SetScale(size);
StaticModel* boxObject = boxNode->CreateComponent<StaticModel>();
boxObject->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
boxObject->SetMaterial(cache->GetResource<Material>("Materials/Stone.xml"));
boxObject->SetCastShadows(true);
if (size >= 3.0f)
boxObject->SetOccluder(true);
}
// Create the cameras. Limit far clip distance to match the fog
cameraNode_ = scene_->CreateChild("Camera");
Camera* camera = cameraNode_->CreateComponent<Camera>();
camera->SetFarClip(300.0f);
// Parent the rear camera node to the front camera node and turn it 180 degrees to face backward
// Here, we use the angle-axis constructor for Quaternion instead of the usual Euler angles
rearCameraNode_ = cameraNode_->CreateChild("RearCamera");
rearCameraNode_->Rotate(Quaternion(180.0f, Vector3::UP));
Camera* rearCamera = rearCameraNode_->CreateComponent<Camera>();
rearCamera->SetFarClip(300.0f);
// Because the rear viewport is rather small, disable occlusion culling from it. Use the camera's
// "view override flags" for this. We could also disable eg. shadows or force low material quality
// if we wanted
rearCamera->SetViewOverrideFlags(VO_DISABLE_OCCLUSION);
// Set an initial position for the front camera scene node above the plane
cameraNode_->SetPosition(Vector3(0.0f, 5.0f, 0.0f));
}
示例9: CreateScene
void DynamicGeometry::CreateScene()
{
ResourceCache* cache = GetSubsystem<ResourceCache>();
scene_ = new Scene(context_);
// Create the Octree component to the scene so that drawable objects can be rendered. Use default volume
// (-1000, -1000, -1000) to (1000, 1000, 1000)
scene_->CreateComponent<Octree>();
// Create a Zone for ambient light & fog control
Node* zoneNode = scene_->CreateChild("Zone");
Zone* zone = zoneNode->CreateComponent<Zone>();
zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
zone->SetFogColor(Color(0.2f, 0.2f, 0.2f));
zone->SetFogStart(200.0f);
zone->SetFogEnd(300.0f);
// Create a directional light
Node* lightNode = scene_->CreateChild("DirectionalLight");
lightNode->SetDirection(Vector3(-0.6f, -1.0f, -0.8f)); // The direction vector does not need to be normalized
Light* light = lightNode->CreateComponent<Light>();
light->SetLightType(LIGHT_DIRECTIONAL);
light->SetColor(Color(0.4f, 1.0f, 0.4f));
light->SetSpecularIntensity(1.5f);
// Get the original model and its unmodified vertices, which are used as source data for the animation
Model* originalModel = cache->GetResource<Model>("Models/Box.mdl");
if (!originalModel)
{
ATOMIC_LOGERROR("Model not found, cannot initialize example scene");
return;
}
// Get the vertex buffer from the first geometry's first LOD level
VertexBuffer* buffer = originalModel->GetGeometry(0, 0)->GetVertexBuffer(0);
const unsigned char* vertexData = (const unsigned char*)buffer->Lock(0, buffer->GetVertexCount());
if (vertexData)
{
unsigned numVertices = buffer->GetVertexCount();
unsigned vertexSize = buffer->GetVertexSize();
// Copy the original vertex positions
for (unsigned i = 0; i < numVertices; ++i)
{
const Vector3& src = *reinterpret_cast<const Vector3*>(vertexData + i * vertexSize);
originalVertices_.Push(src);
}
buffer->Unlock();
// Detect duplicate vertices to allow seamless animation
vertexDuplicates_.Resize(originalVertices_.Size());
for (unsigned i = 0; i < originalVertices_.Size(); ++i)
{
vertexDuplicates_[i] = i; // Assume not a duplicate
for (unsigned j = 0; j < i; ++j)
{
if (originalVertices_[i].Equals(originalVertices_[j]))
{
vertexDuplicates_[i] = j;
break;
}
}
}
}
else
{
ATOMIC_LOGERROR("Failed to lock the model vertex buffer to get original vertices");
return;
}
// Create StaticModels in the scene. Clone the model for each so that we can modify the vertex data individually
for (int y = -1; y <= 1; ++y)
{
for (int x = -1; x <= 1; ++x)
{
Node* node = scene_->CreateChild("Object");
node->SetPosition(Vector3(x * 2.0f, 0.0f, y * 2.0f));
StaticModel* object = node->CreateComponent<StaticModel>();
SharedPtr<Model> cloneModel = originalModel->Clone();
object->SetModel(cloneModel);
// Store the cloned vertex buffer that we will modify when animating
animatingBuffers_.Push(SharedPtr<VertexBuffer>(cloneModel->GetGeometry(0, 0)->GetVertexBuffer(0)));
}
}
// Finally create one model (pyramid shape) and a StaticModel to display it from scratch
// Note: there are duplicated vertices to enable face normals. We will calculate normals programmatically
{
const unsigned numVertices = 18;
float vertexData[] = {
// Position Normal
0.0f, 0.5f, 0.0f, 0.0f, 0.0f, 0.0f,
0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 0.0f,
0.5f, -0.5f, -0.5f, 0.0f, 0.0f, 0.0f,
0.0f, 0.5f, 0.0f, 0.0f, 0.0f, 0.0f,
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 0.0f,
0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 0.0f,
0.0f, 0.5f, 0.0f, 0.0f, 0.0f, 0.0f,
//.........这里部分代码省略.........
示例10: Scene
void Urho3DTemplate::CreateScene()
{
ResourceCache* cache = GetSubsystem<ResourceCache>();
scene_ = new Scene(context_);
//Create octree, use default volume (-1000, -1000, -1000) to (1000,1000,1000)
//Also create a DebugRenderer component so that we can draw debug geometry
scene_->CreateComponent<Octree>();
scene_->CreateComponent<DebugRenderer>();
//Create scene node & StaticModel component for showing a static plane
Node* planeNode = scene_->CreateChild("Plane");
planeNode->SetScale(Vector3(100.0f, 1.0f, 100.0f));
StaticModel* planeObject = planeNode->CreateComponent<StaticModel>();
planeObject->SetModel(cache->GetResource<Model>("Models/Plane.mdl"));
planeObject->SetMaterial(cache->GetResource<Material>("Materials/StoneTiled.xml"));
//Create a Zone component for ambient lighting & fog control
Node* zoneNode = scene_->CreateChild("Zone");
Zone* zone = zoneNode->CreateComponent<Zone>();
zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
zone->SetAmbientColor(Color(0.15f, 0.15f, 0.15f));
zone->SetFogColor(Color(0.5f, 0.5f, 0.7f));
zone->SetFogStart(100.0f);
zone->SetFogEnd(300.0f);
//Create a directional light to the world. Enable cascaded shadows on it
Node* lightNode = scene_->CreateChild("DirectionalLight");
lightNode->SetDirection(Vector3(0.6f, -1.0f, 0.8f));
Light* light = lightNode->CreateComponent<Light>();
light->SetLightType(LIGHT_DIRECTIONAL);
light->SetCastShadows(true);
light->SetShadowBias(BiasParameters(0.00025f, 0.5f));
//Set cascade splits at 10, 50, 200 world unitys, fade shadows at 80% of maximum shadow distance
light->SetShadowCascade(CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f));
//Create some mushrooms
const unsigned NUM_MUSHROOMS = 100;
for (unsigned i = 0; i < NUM_MUSHROOMS; ++i)
CreateMushroom(Vector3(Random(90.0f) - 45.0f, 0.0f, Random(90.0f) - 45.0f));
//Create randomly sized boxes. If boxes are big enough make them occluders
const unsigned NUM_BOXES = 20;
for (unsigned i = 0; i <NUM_BOXES; ++i)
{
Node* boxNode = scene_->CreateChild("Box");
float size = 1.0f + Random(10.0f);
boxNode->SetPosition(Vector3(Random(80.0f) - 40.0f, size * 0.5f, Random(80.0f) - 40.0f));
boxNode->SetScale(size);
StaticModel* boxObject = boxNode->CreateComponent<StaticModel>();
boxObject->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
boxObject->SetMaterial(cache->GetResource<Material>("Materials/Stone.xml"));
boxObject->SetCastShadows(true);
if (size >= 3.0f)
boxObject->SetOccluder(true);
}
//Create Jack node that will follow the path
jackNode_ = scene_->CreateChild("Jack");
jackNode_->SetPosition(Vector3(-5.0f, 0.0f, 20.0f));
AnimatedModel* modelObject = jackNode_->CreateComponent<AnimatedModel>();
modelObject->SetModel(cache->GetResource<Model>("Model/Jack.mdl"));
modelObject->SetMaterial(cache->GetResource<Material>("Materials/Jack.xml"));
modelObject->SetCastShadows(true);
//Create the camera. Limit far clip distance to match the fog
cameraNode_ = scene_->CreateChild("Camera");
Camera* camera = cameraNode_->CreateComponent<Camera>();
camera->SetFarClip(300.0f);
//Set an initial position for the camera scene node above the plane
cameraNode_->SetPosition(Vector3(0.0f, 5.0f, 0.0f));
}
示例11: CreateScene
void Ragdolls::CreateScene()
{
ResourceCache* cache = GetContext()->m_ResourceCache.get();
scene_ = new Scene(GetContext());
// Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
// Create a physics simulation world with default parameters, which will update at 60fps. Like the Octree must
// exist before creating drawable components, the PhysicsWorld must exist before creating physics components.
// Finally, create a DebugRenderer component so that we can draw physics debug geometry
scene_->CreateComponent<Octree>();
scene_->CreateComponent<PhysicsWorld>();
scene_->CreateComponent<DebugRenderer>();
// Create a Zone component for ambient lighting & fog control
Node* zoneNode = scene_->CreateChild("Zone");
Zone* zone = zoneNode->CreateComponent<Zone>();
zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
zone->SetAmbientColor(Color(0.15f, 0.15f, 0.15f));
zone->SetFogColor(Color(0.5f, 0.5f, 0.7f));
zone->SetFogStart(100.0f);
zone->SetFogEnd(300.0f);
// Create a directional light to the world. Enable cascaded shadows on it
Node* lightNode = scene_->CreateChild("DirectionalLight");
lightNode->SetDirection(Vector3(0.6f, -1.0f, 0.8f));
Light* light = lightNode->CreateComponent<Light>();
light->SetLightType(LIGHT_DIRECTIONAL);
light->SetCastShadows(true);
light->SetShadowBias(BiasParameters(0.00025f, 0.5f));
// Set cascade splits at 10, 50 and 200 world units, fade shadows out at 80% of maximum shadow distance
light->SetShadowCascade(CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f));
{
// Create a floor object, 500 x 500 world units. Adjust position so that the ground is at zero Y
Node* floorNode = scene_->CreateChild("Floor");
floorNode->SetPosition(Vector3(0.0f, -0.5f, 0.0f));
floorNode->SetScale(Vector3(500.0f, 1.0f, 500.0f));
StaticModel* floorObject = floorNode->CreateComponent<StaticModel>();
floorObject->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
floorObject->SetMaterial(cache->GetResource<Material>("Materials/StoneTiled.xml"));
// Make the floor physical by adding RigidBody and CollisionShape components
RigidBody* body = floorNode->CreateComponent<RigidBody>();
// We will be spawning spherical objects in this sample. The ground also needs non-zero rolling friction so that
// the spheres will eventually come to rest
body->SetRollingFriction(0.15f);
CollisionShape* shape = floorNode->CreateComponent<CollisionShape>();
// Set a box shape of size 1 x 1 x 1 for collision. The shape will be scaled with the scene node scale, so the
// rendering and physics representation sizes should match (the box model is also 1 x 1 x 1.)
shape->SetBox(Vector3::ONE);
}
// Create animated models
for (int z = -1; z <= 1; ++z)
{
for (int x = -4; x <= 4; ++x)
{
Node* modelNode = scene_->CreateChild("Jack");
modelNode->SetPosition(Vector3(x * 5.0f, 0.0f, z * 5.0f));
modelNode->SetRotation(Quaternion(0.0f, 180.0f, 0.0f));
AnimatedModel* modelObject = modelNode->CreateComponent<AnimatedModel>();
modelObject->SetModel(cache->GetResource<Model>("Models/Jack.mdl"));
modelObject->SetMaterial(cache->GetResource<Material>("Materials/Jack.xml"));
modelObject->SetCastShadows(true);
// Set the model to also update when invisible to avoid staying invisible when the model should come into
// view, but does not as the bounding box is not updated
modelObject->SetUpdateInvisible(true);
// Create a rigid body and a collision shape. These will act as a trigger for transforming the
// model into a ragdoll when hit by a moving object
RigidBody* body = modelNode->CreateComponent<RigidBody>();
// The Trigger mode makes the rigid body only detect collisions, but impart no forces on the
// colliding objects
body->SetTrigger(true);
CollisionShape* shape = modelNode->CreateComponent<CollisionShape>();
// Create the capsule shape with an offset so that it is correctly aligned with the model, which
// has its origin at the feet
shape->SetCapsule(0.7f, 2.0f, Vector3(0.0f, 1.0f, 0.0f));
// Create a custom component that reacts to collisions and creates the ragdoll
modelNode->CreateComponent<CreateRagdoll>();
}
}
// Create the camera. Limit far clip distance to match the fog. Note: now we actually create the camera node outside
// the scene, because we want it to be unaffected by scene load / save
cameraNode_ = new Node(GetContext());
Camera* camera = cameraNode_->CreateComponent<Camera>();
camera->setFarClipDistance(300.0f);
// Set an initial position for the camera scene node above the floor
cameraNode_->SetPosition(Vector3(0.0f, 3.0f, -20.0f));
}
示例12: CreateScene
void Navigation::CreateScene()
{
ResourceCache* cache = GetSubsystem<ResourceCache>();
scene_ = new Scene(context_);
// Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
// Also create a DebugRenderer component so that we can draw debug geometry
scene_->CreateComponent<Octree>();
scene_->CreateComponent<DebugRenderer>();
// Create scene node & StaticModel component for showing a static plane
Node* planeNode = scene_->CreateChild("Plane");
planeNode->SetScale(Vector3(100.0f, 1.0f, 100.0f));
StaticModel* planeObject = planeNode->CreateComponent<StaticModel>();
planeObject->SetModel(cache->GetResource<Model>("Models/Plane.mdl"));
planeObject->SetMaterial(cache->GetResource<Material>("Materials/StoneTiled.xml"));
// Create a Zone component for ambient lighting & fog control
Node* zoneNode = scene_->CreateChild("Zone");
Zone* zone = zoneNode->CreateComponent<Zone>();
zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
zone->SetAmbientColor(Color(0.15f, 0.15f, 0.15f));
zone->SetFogColor(Color(0.5f, 0.5f, 0.7f));
zone->SetFogStart(100.0f);
zone->SetFogEnd(300.0f);
// Create a directional light to the world. Enable cascaded shadows on it
Node* lightNode = scene_->CreateChild("DirectionalLight");
lightNode->SetDirection(Vector3(0.6f, -1.0f, 0.8f));
Light* light = lightNode->CreateComponent<Light>();
light->SetLightType(LIGHT_DIRECTIONAL);
light->SetCastShadows(true);
light->SetShadowBias(BiasParameters(0.0001f, 0.5f));
// Set cascade splits at 10, 50 and 200 world units, fade shadows out at 80% of maximum shadow distance
light->SetShadowCascade(CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f));
// Create some mushrooms
const unsigned NUM_MUSHROOMS = 100;
for (unsigned i = 0; i < NUM_MUSHROOMS; ++i)
CreateMushroom(Vector3(Random(90.0f) - 45.0f, 0.0f, Random(90.0f) - 45.0f));
// Create randomly sized boxes. If boxes are big enough, make them occluders
const unsigned NUM_BOXES = 20;
for (unsigned i = 0; i < NUM_BOXES; ++i)
{
Node* boxNode = scene_->CreateChild("Box");
float size = 1.0f + Random(10.0f);
boxNode->SetPosition(Vector3(Random(80.0f) - 40.0f, size * 0.5f, Random(80.0f) - 40.0f));
boxNode->SetScale(size);
StaticModel* boxObject = boxNode->CreateComponent<StaticModel>();
boxObject->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
boxObject->SetMaterial(cache->GetResource<Material>("Materials/Stone.xml"));
boxObject->SetCastShadows(true);
if (size >= 3.0f)
boxObject->SetOccluder(true);
}
// Create a NavigationMesh component to the scene root
NavigationMesh* navMesh = scene_->CreateComponent<NavigationMesh>();
// Create a Navigable component to the scene root. This tags all of the geometry in the scene as being part of the
// navigation mesh. By default this is recursive, but the recursion could be turned off from Navigable
scene_->CreateComponent<Navigable>();
// Add padding to the navigation mesh in Y-direction so that we can add objects on top of the tallest boxes
// in the scene and still update the mesh correctly
navMesh->SetPadding(Vector3(0.0f, 10.0f, 0.0f));
// Now build the navigation geometry. This will take some time. Note that the navigation mesh will prefer to use
// physics geometry from the scene nodes, as it often is simpler, but if it can not find any (like in this example)
// it will use renderable geometry instead
navMesh->Build();
// Create the camera. Limit far clip distance to match the fog
cameraNode_ = scene_->CreateChild("Camera");
Camera* camera = cameraNode_->CreateComponent<Camera>();
camera->SetFarClip(300.0f);
// Set an initial position for the camera scene node above the plane
cameraNode_->SetPosition(Vector3(0.0f, 5.0f, 0.0f));
}
示例13: CreateScene
void Water::CreateScene()
{
ResourceCache* cache = GetContext()->m_ResourceCache.get();
scene_ = new Scene(GetContext());
// Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
scene_->CreateComponent<Octree>();
// Create a Zone component for ambient lighting & fog control
Node* zoneNode = scene_->CreateChild("Zone");
Zone* zone = zoneNode->CreateComponent<Zone>();
zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
zone->SetAmbientColor(Color(0.15f, 0.15f, 0.15f));
zone->SetFogColor(Color(1.0f, 1.0f, 1.0f));
zone->SetFogStart(500.0f);
zone->SetFogEnd(750.0f);
// Create a directional light to the world. Enable cascaded shadows on it
Node* lightNode = scene_->CreateChild("DirectionalLight");
lightNode->SetDirection(Vector3(0.6f, -1.0f, 0.8f));
Light* light = lightNode->CreateComponent<Light>();
light->SetLightType(LIGHT_DIRECTIONAL);
light->SetCastShadows(true);
light->SetShadowBias(BiasParameters(0.00025f, 0.5f));
light->SetShadowCascade(CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f));
light->SetSpecularIntensity(0.5f);
// Apply slightly overbright lighting to match the skybox
light->SetColor(Color(1.2f, 1.2f, 1.2f));
// Create skybox. The Skybox component is used like StaticModel, but it will be always located at the camera, giving the
// illusion of the box planes being far away. Use just the ordinary Box model and a suitable material, whose shader will
// generate the necessary 3D texture coordinates for cube mapping
Node* skyNode = scene_->CreateChild("Sky");
skyNode->SetScale(500.0f); // The scale actually does not matter
Skybox* skybox = skyNode->CreateComponent<Skybox>();
skybox->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
skybox->SetMaterial(cache->GetResource<Material>("Materials/Skybox.xml"));
// Create heightmap terrain
Node* terrainNode = scene_->CreateChild("Terrain");
terrainNode->SetPosition(Vector3(0.0f, 0.0f, 0.0f));
Terrain* terrain = terrainNode->CreateComponent<Terrain>();
terrain->SetPatchSize(64);
terrain->SetSpacing(Vector3(2.0f, 0.5f, 2.0f)); // Spacing between vertices and vertical resolution of the height map
terrain->SetSmoothing(true);
terrain->SetHeightMap(cache->GetResource<Image>("Textures/HeightMap.png"));
terrain->SetMaterial(cache->GetResource<Material>("Materials/Terrain.xml"));
// The terrain consists of large triangles, which fits well for occlusion rendering, as a hill can occlude all
// terrain patches and other objects behind it
terrain->SetOccluder(true);
// Create 1000 boxes in the terrain. Always face outward along the terrain normal
unsigned NUM_OBJECTS = 1000;
for (unsigned i = 0; i < NUM_OBJECTS; ++i)
{
Node* objectNode = scene_->CreateChild("Box");
Vector3 position(Random(2000.0f) - 1000.0f, 0.0f, Random(2000.0f) - 1000.0f);
position.y_ = terrain->GetHeight(position) + 2.25f;
objectNode->SetPosition(position);
// Create a rotation quaternion from up vector to terrain normal
objectNode->SetRotation(Quaternion(Vector3(0.0f, 1.0f, 0.0f), terrain->GetNormal(position)));
objectNode->SetScale(5.0f);
StaticModel* object = objectNode->CreateComponent<StaticModel>();
object->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
object->SetMaterial(cache->GetResource<Material>("Materials/Stone.xml"));
object->SetCastShadows(true);
}
Node* shipNode = scene_->CreateChild("Ship");
shipNode->SetPosition(Vector3(0.0f, 4.6f, 0.0f));
//shipNode->SetRotation(Quaternion(0.0f, Random(360.0f), 0.0f));
shipNode->SetScale(0.5f + Random(2.0f));
StaticModel* shipObject = shipNode->CreateComponent<StaticModel>();
shipObject->SetModel(cache->GetResource<Model>("Models/ship04.mdl"));
shipObject->SetMaterial(0,cache->GetResource<Material>("Materials/ship04_Material0.xml"));
shipObject->SetMaterial(1,cache->GetResource<Material>("Materials/ship04_Material1.xml"));
shipObject->SetMaterial(2,cache->GetResource<Material>("Materials/ship04_Material2.xml"));
shipObject->SetCastShadows(true);
// Create a water plane object that is as large as the terrain
waterNode_ = scene_->CreateChild("Water");
waterNode_->SetScale(Vector3(2048.0f, 1.0f, 2048.0f));
waterNode_->SetPosition(Vector3(0.0f, 5.0f, 0.0f));
StaticModel* water = waterNode_->CreateComponent<StaticModel>();
water->SetModel(cache->GetResource<Model>("Models/Plane.mdl"));
water->SetMaterial(cache->GetResource<Material>("Materials/Water.xml"));
// Set a different viewmask on the water plane to be able to hide it from the reflection camera
water->SetViewMask(0x80000000);
// Create the camera. Set far clip to match the fog. Note: now we actually create the camera node outside
// the scene, because we want it to be unaffected by scene load / save
cameraNode_ = new Node(GetContext());
Camera* camera = cameraNode_->CreateComponent<Camera>();
camera->setFarClipDistance(750.0f);
// Set an initial position for the camera scene node above the ground
cameraNode_->SetPosition(Vector3(0.0f, 7.0f, -20.0f));
}
示例14: CreateScene
void CharacterDemo::CreateScene()
{
ResourceCache* cache = GetSubsystem<ResourceCache>();
scene_ = new Scene(context_);
// Create scene subsystem components
scene_->CreateComponent<Octree>();
scene_->CreateComponent<PhysicsWorld>();
// Create camera and define viewport. We will be doing load / save, so it's convenient to create the camera outside the scene,
// so that it won't be destroyed and recreated, and we don't have to redefine the viewport on load
cameraNode_ = new Node(context_);
Camera* camera = cameraNode_->CreateComponent<Camera>();
camera->SetFarClip(300.0f);
GetSubsystem<Renderer>()->SetViewport(0, new Viewport(context_, scene_, camera));
// Create static scene content. First create a zone for ambient lighting and fog control
Node* zoneNode = scene_->CreateChild("Zone");
Zone* zone = zoneNode->CreateComponent<Zone>();
zone->SetAmbientColor(Color(0.15f, 0.15f, 0.15f));
zone->SetFogColor(Color(0.5f, 0.5f, 0.7f));
zone->SetFogStart(100.0f);
zone->SetFogEnd(300.0f);
zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
// Create a directional light with cascaded shadow mapping
Node* lightNode = scene_->CreateChild("DirectionalLight");
lightNode->SetDirection(Vector3(0.3f, -0.5f, 0.425f));
Light* light = lightNode->CreateComponent<Light>();
light->SetLightType(LIGHT_DIRECTIONAL);
light->SetCastShadows(true);
light->SetShadowBias(BiasParameters(0.00025f, 0.5f));
light->SetShadowCascade(CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f));
light->SetSpecularIntensity(0.5f);
// Create the floor object
Node* floorNode = scene_->CreateChild("Floor");
floorNode->SetPosition(Vector3(0.0f, -0.5f, 0.0f));
floorNode->SetScale(Vector3(200.0f, 1.0f, 200.0f));
StaticModel* object = floorNode->CreateComponent<StaticModel>();
object->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
object->SetMaterial(cache->GetResource<Material>("Materials/Stone.xml"));
RigidBody* body = floorNode->CreateComponent<RigidBody>();
// Use collision layer bit 2 to mark world scenery. This is what we will raycast against to prevent camera from going
// inside geometry
body->SetCollisionLayer(2);
CollisionShape* shape = floorNode->CreateComponent<CollisionShape>();
shape->SetBox(Vector3::ONE);
// Create mushrooms of varying sizes
const unsigned NUM_MUSHROOMS = 60;
for (unsigned i = 0; i < NUM_MUSHROOMS; ++i)
{
Node* objectNode = scene_->CreateChild("Mushroom");
objectNode->SetPosition(Vector3(Random(180.0f) - 90.0f, 0.0f, Random(180.0f) - 90.0f));
objectNode->SetRotation(Quaternion(0.0f, Random(360.0f), 0.0f));
objectNode->SetScale(2.0f + Random(5.0f));
StaticModel* object = objectNode->CreateComponent<StaticModel>();
object->SetModel(cache->GetResource<Model>("Models/Mushroom.mdl"));
object->SetMaterial(cache->GetResource<Material>("Materials/Mushroom.xml"));
object->SetCastShadows(true);
RigidBody* body = objectNode->CreateComponent<RigidBody>();
body->SetCollisionLayer(2);
CollisionShape* shape = objectNode->CreateComponent<CollisionShape>();
shape->SetTriangleMesh(object->GetModel(), 0);
}
// Create movable boxes. Let them fall from the sky at first
const unsigned NUM_BOXES = 100;
for (unsigned i = 0; i < NUM_BOXES; ++i)
{
float scale = Random(2.0f) + 0.5f;
Node* objectNode = scene_->CreateChild("Box");
objectNode->SetPosition(Vector3(Random(180.0f) - 90.0f, Random(10.0f) + 10.0f, Random(180.0f) - 90.0f));
objectNode->SetRotation(Quaternion(Random(360.0f), Random(360.0f), Random(360.0f)));
objectNode->SetScale(scale);
StaticModel* object = objectNode->CreateComponent<StaticModel>();
object->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
object->SetMaterial(cache->GetResource<Material>("Materials/Stone.xml"));
object->SetCastShadows(true);
RigidBody* body = objectNode->CreateComponent<RigidBody>();
body->SetCollisionLayer(2);
// Bigger boxes will be heavier and harder to move
body->SetMass(scale * 2.0f);
CollisionShape* shape = objectNode->CreateComponent<CollisionShape>();
shape->SetBox(Vector3::ONE);
}
}
示例15: CreateScene
void GameApplication::CreateScene()
{
ResourceCache* cache = GetSubsystem<ResourceCache>();
scene_ = new Scene(context_);
// Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
// Also create a DebugRenderer component so that we can draw debug geometry
scene_->CreateComponent<Octree>();
scene_->CreateComponent<DebugRenderer>();
// Create scene node & StaticModel component for showing a static plane
Node* planeNode = scene_->CreateChild("Plane");
//planeNode->SetScale(Vector3(100.0f, 1.0f, 100.0f));
StaticModel* planeObject = planeNode->CreateComponent<StaticModel>();
planeObject->SetModel(cache->GetResource<Model>("Models/dikuang.mdl"));
Material* material = cache->GetResource<Material>("Materials/Water.xml");
planeObject->SetMaterial(material); //dikuang
// Create a Zone component for ambient lighting & fog control
Node* zoneNode = scene_->CreateChild("Zone");
Zone* zone = zoneNode->CreateComponent<Zone>();
zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
zone->SetAmbientColor(Color(0.3f, 0.3f, 0.3f));
zone->SetFogColor(Color(0.5f, 0.5f, 0.7f));
zone->SetFogStart(100.0f);
zone->SetFogEnd(300.0f);
// Create a directional light to the world. Enable cascaded shadows on it
Node* lightNode = scene_->CreateChild("DirectionalLight");
lightNode->SetDirection(Vector3(0.2f, -0.5f, -0.1f));
Light* light = lightNode->CreateComponent<Light>();
light->SetLightType(LIGHT_DIRECTIONAL);
// light->SetSpecularIntensity(3);
light->SetBrightness(1);
light->SetCastShadows(true);
light->SetShadowBias(BiasParameters(0.0001f, 0.5f));
// Set cascade splits at 10, 50 and 200 world units, fade shadows out at 80% of maximum shadow distance
light->SetShadowCascade(CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f));
InitGridModels();
// Create the camera. Limit far clip distance to match the fog
cameraNode_ = scene_->CreateChild("Camera");
Camera* camera = cameraNode_->CreateComponent<Camera>();
//float fZoom = camera->GetFov();
//camera->SetFov(fZoom);
camera->SetFarClip(300.0f);
// Set an initial position for the camera scene node above the plane
cameraNode_->SetPosition(Vector3(0.2318,7.5248,-0.2721));
yaw_ = 0.10003410;
pitch_ = 90;
// cameraNode_->SetPosition(Vector3(5.0f, 5.0f, -15.0f));
//pitch_ = 19;
cameraNode_->SetRotation(Quaternion(pitch_, yaw_, 0.0f));
}