当前位置: 首页>>代码示例>>C++>>正文


C++ Zone::SetAmbientColor方法代码示例

本文整理汇总了C++中Zone::SetAmbientColor方法的典型用法代码示例。如果您正苦于以下问题:C++ Zone::SetAmbientColor方法的具体用法?C++ Zone::SetAmbientColor怎么用?C++ Zone::SetAmbientColor使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Zone的用法示例。


在下文中一共展示了Zone::SetAmbientColor方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: CreateScene

void RTTScene::CreateScene()
{
	rttScene_ = new Scene(context_);
	rttScene_->CreateComponent<Octree>();

	Node* zoneNode = rttScene_->CreateChild("Zone");
	Zone* zone = zoneNode->CreateComponent<Zone>();
	zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
	zone->SetAmbientColor(Color(0.05f, 0.1f, 0.15f));
	zone->SetFogColor(Color(0.1f, 0.2f, 0.3f));
	zone->SetFogStart(10.0f);
	zone->SetFogEnd(100.0f);

	//用来指定ViewPort时的定位
	rttCameraNode_ = rttScene_->CreateChild("Camera");
	Camera* camera = rttCameraNode_->CreateComponent<Camera>();
	
	Light* light = rttCameraNode_->CreateComponent<Light>();
	light->SetLightType(LIGHT_POINT);

	renderTexture = new Texture2D(context_);
	//设置当前场景的ViewPort
	renderTexture->SetSize(_width,_height,Graphics::GetRGBFormat(),TEXTURE_RENDERTARGET);
	RenderSurface* surface = renderTexture->GetRenderSurface();
	renderTexture->SetFilterMode(FILTER_BILINEAR);

	Viewport* rttViewPort = new Viewport(context_,rttScene_,camera);
	surface->SetViewport(0,rttViewPort);
}
开发者ID:xujingsy,项目名称:Urho3D_xujing,代码行数:29,代码来源:RTTScene.cpp

示例2: CreateScene

void SceneReplication::CreateScene()
{
    scene_ = new Scene(context_);

    // Create scene content on the server only
    ResourceCache* cache = GetSubsystem<ResourceCache>();

    // Create octree and physics world with default settings. Create them as local so that they are not needlessly replicated
    // when a client connects
    scene_->CreateComponent<Octree>(LOCAL);
    scene_->CreateComponent<PhysicsWorld>(LOCAL);

    // All static scene content and the camera are also created as local, so that they are unaffected by scene replication and are
    // not removed from the client upon connection. Create a Zone component first for ambient lighting & fog control.
    Node* zoneNode = scene_->CreateChild("Zone", LOCAL);
    Zone* zone = zoneNode->CreateComponent<Zone>();
    zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
    zone->SetAmbientColor(Color(0.1f, 0.1f, 0.1f));
    zone->SetFogStart(100.0f);
    zone->SetFogEnd(300.0f);

    // Create a directional light without shadows
    Node* lightNode = scene_->CreateChild("DirectionalLight", LOCAL);
    lightNode->SetDirection(Vector3(0.5f, -1.0f, 0.5f));
    Light* light = lightNode->CreateComponent<Light>();
    light->SetLightType(LIGHT_DIRECTIONAL);
    light->SetColor(Color(0.2f, 0.2f, 0.2f));
    light->SetSpecularIntensity(1.0f);

    // Create a "floor" consisting of several tiles. Make the tiles physical but leave small cracks between them
    for (int y = -20; y <= 20; ++y)
    {
        for (int x = -20; x <= 20; ++x)
        {
            Node* floorNode = scene_->CreateChild("FloorTile", LOCAL);
            floorNode->SetPosition(Vector3(x * 20.2f, -0.5f, y * 20.2f));
            floorNode->SetScale(Vector3(20.0f, 1.0f, 20.0f));
            StaticModel* floorObject = floorNode->CreateComponent<StaticModel>();
            floorObject->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
            floorObject->SetMaterial(cache->GetResource<Material>("Materials/Stone.xml"));

            RigidBody* body = floorNode->CreateComponent<RigidBody>();
            body->SetFriction(1.0f);
            CollisionShape* shape = floorNode->CreateComponent<CollisionShape>();
            shape->SetBox(Vector3::ONE);
        }
    }

    // Create the camera. Limit far clip distance to match the fog
    // The camera needs to be created into a local node so that each client can retain its own camera, that is unaffected by
    // network messages. Furthermore, because the client removes all replicated scene nodes when connecting to a server scene,
    // the screen would become blank if the camera node was replicated (as only the locally created camera is assigned to a
    // viewport in SetupViewports() below)
    cameraNode_ = scene_->CreateChild("Camera", LOCAL);
    Camera* camera = cameraNode_->CreateComponent<Camera>();
    camera->SetFarClip(300.0f);

    // Set an initial position for the camera scene node above the plane
    cameraNode_->SetPosition(Vector3(0.0f, 5.0f, 0.0f));
}
开发者ID:FeodorFitsner,项目名称:Urho3D,代码行数:60,代码来源:SceneReplication.cpp

示例3: CreateScene

void LuaIntegration::CreateScene()
{
    ResourceCache* cache = GetSubsystem<ResourceCache>();

    scene_ = new Scene(context_);

    // Create the Octree component to the scene so that drawable objects can be rendered. Use default volume
    // (-1000, -1000, -1000) to (1000, 1000, 1000)
    scene_->CreateComponent<Octree>();

    // Create a Zone component into a child scene node. The Zone controls ambient lighting and fog settings. Like the Octree,
    // it also defines its volume with a bounding box, but can be rotated (so it does not need to be aligned to the world X, Y
    // and Z axes.) Drawable objects "pick up" the zone they belong to and use it when rendering; several zones can exist
    Node* zoneNode = scene_->CreateChild("Zone");
    Zone* zone = zoneNode->CreateComponent<Zone>();
    // Set same volume as the Octree, set a close bluish fog and some ambient light
    zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
    zone->SetAmbientColor(Color(0.05f, 0.1f, 0.15f));
    zone->SetFogColor(Color(0.1f, 0.2f, 0.3f));
    zone->SetFogStart(10.0f);
    zone->SetFogEnd(100.0f);
    
    // Create randomly positioned and oriented box StaticModels in the scene
    const unsigned NUM_OBJECTS = 2000;
    for (unsigned i = 0; i < NUM_OBJECTS; ++i)
    {
        Node* boxNode = scene_->CreateChild("Box");
        boxNode->SetPosition(Vector3(Random(200.0f) - 100.0f, Random(200.0f) - 100.0f, Random(200.0f) - 100.0f));
        // Orient using random pitch, yaw and roll Euler angles
        boxNode->SetRotation(Quaternion(Random(360.0f), Random(360.0f), Random(360.0f)));
        StaticModel* boxObject = boxNode->CreateComponent<StaticModel>();
        boxObject->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
        boxObject->SetMaterial(cache->GetResource<Material>("Materials/Stone.xml"));
        
        // Add our custom Rotator script object (using the LuaScriptInstance C++ component to instantiate / store it) which will
        // rotate the scene node each frame, when the scene sends its update event
        LuaScriptInstance* instance = boxNode->CreateComponent<LuaScriptInstance>();
        instance->CreateObject("LuaScripts/Rotator.lua", "Rotator");
        
        // Call the script object's "SetRotationSpeed" function.
        WeakPtr<LuaFunction> function = instance->GetScriptObjectFunction("SetRotationSpeed");
        if (function && function->BeginCall(instance))
        {
            function->PushUserType(Vector3(10.0f, 20.0f, 30.0f), "Vector3");
            function->EndCall();
        }
    }
    
    // Create the camera. Let the starting position be at the world origin. As the fog limits maximum visible distance, we can
    // bring the far clip plane closer for more effective culling of distant objects
    cameraNode_ = scene_->CreateChild("Camera");
    Camera* camera = cameraNode_->CreateComponent<Camera>();
    camera->SetFarClip(100.0f);
    
    // Create a point light to the camera scene node
    Light* light = cameraNode_->CreateComponent<Light>();
    light->SetLightType(LIGHT_POINT);
    light->SetRange(30.0f);
}
开发者ID:Gotusso,项目名称:Urho3D,代码行数:59,代码来源:LuaIntegration.cpp

示例4: CreateScene

void Labyrinth::CreateScene()
{
    // ADDED
    ResourceCache* cache = GetSubsystem<ResourceCache>();
    
    scene_ = new Scene(context_);
    
    // TODO vzdialenost kamery podla rozlisenia obrazovky
    
    // Create scene subsystem components
    scene_->CreateComponent<Octree>();
    scene_->CreateComponent<PhysicsWorld>();
    scene_->CreateComponent<DebugRenderer>();
    
    // Create camera and define viewport. We will be doing load / save, so it's convenient to create the camera outside the scene,
    // so that it won't be destroyed and recreated, and we don't have to redefine the viewport on load
    // TODO treb vytunit poziciu kamery a jej rotaciu
    cameraNode_ = new Node(context_);
    cameraNode_->SetName("cameraNode");
    Camera* camera = cameraNode_->CreateComponent<Camera>();
    camera->SetFarClip(300.0f);
    // aby to vyzeralo ako 2.5D treba prepnut ortho na true
    /*camera->SetOrthographic(false);
    cameraNode_->SetPosition(Vector3(10, 90, 10));
    cameraNode_->SetRotation(Quaternion(75, 0, 0));
    GetSubsystem<Renderer>()->SetViewport(0, new Viewport(context_, scene_, camera));*/
    
    camera->SetOrthographic(false);
    cameraNode_->SetPosition(Vector3(0, 10, 0));
    cameraNode_->SetRotation(Quaternion(90, 0, 0));
    
   
    
    // Create static scene content. First create a zone for ambient lightning and fog control
    Node* zoneNode = scene_->CreateChild("Zone");
    Zone* zone = zoneNode->CreateComponent<Zone>();
    zone->SetAmbientColor(Color(0.15f, 0.15f, 0.15f));
    zone->SetFogColor(Color(0.5f, 0.5f, 0.7f));
    zone->SetFogStart(1000.0f);
    zone->SetFogEnd(1000.0f);
    zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));

    // Create a directional light with cascaded shadow mapping
    Node* lightNode = scene_->CreateChild("DirectionalLight");
    lightNode->SetDirection(Vector3(0.3f, -0.5f, 0.425f));
    Light* light = lightNode->CreateComponent<Light>();
    light->SetLightType(LIGHT_DIRECTIONAL);
    light->SetCastShadows(true);
    light->SetShadowBias(BiasParameters(0.00025f, 0.5f));
    light->SetShadowCascade(CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f));
    light->SetSpecularIntensity(1.0f);
    
    // ------------------------------------------
    
    CreateFloor(20, 14);
}
开发者ID:emp64,项目名称:TuxKing,代码行数:56,代码来源:Labyrinth.cpp

示例5: CreateScene

void AnimatingScene::CreateScene()
{
    ResourceCache* cache = GetSubsystem<ResourceCache>();
    
    scene_ = new Scene(context_);
    
    // Create the Octree component to the scene so that drawable objects can be rendered. Use default volume
    // (-1000, -1000, -1000) to (1000, 1000, 1000)
    scene_->CreateComponent<Octree>();
    
    // Create a Zone component into a child scene node. The Zone controls ambient lighting and fog settings. Like the Octree,
    // it also defines its volume with a bounding box, but can be rotated (so it does not need to be aligned to the world X, Y
    // and Z axes.) Drawable objects "pick up" the zone they belong to and use it when rendering; several zones can exist
    Node* zoneNode = scene_->CreateChild("Zone");
    Zone* zone = zoneNode->CreateComponent<Zone>();
    // Set same volume as the Octree, set a close bluish fog and some ambient light
    zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
    zone->SetAmbientColor(Color(0.05f, 0.1f, 0.15f));
    zone->SetFogColor(Color(0.1f, 0.2f, 0.3f));
    zone->SetFogStart(10.0f);
    zone->SetFogEnd(100.0f);
    
    // Create randomly positioned and oriented box StaticModels in the scene
    const unsigned NUM_OBJECTS = 2000;
    for (unsigned i = 0; i < NUM_OBJECTS; ++i)
    {
        Node* boxNode = scene_->CreateChild("Box");
        boxNode->SetPosition(Vector3(Random(200.0f) - 100.0f, Random(200.0f) - 100.0f, Random(200.0f) - 100.0f));
        // Orient using random pitch, yaw and roll Euler angles
        boxNode->SetRotation(Quaternion(Random(360.0f), Random(360.0f), Random(360.0f)));
        StaticModel* boxObject = boxNode->CreateComponent<StaticModel>();
        boxObject->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
        boxObject->SetMaterial(cache->GetResource<Material>("Materials/Stone.xml"));
        
        // Add our custom Rotator component which will rotate the scene node each frame, when the scene sends its update event.
        // The Rotator component derives from the base class LogicComponent, which has convenience functionality to subscribe
        // to the various update events, and forward them to virtual functions that can be implemented by subclasses. This way
        // writing logic/update components in C++ becomes similar to scripting.
        // Now we simply set same rotation speed for all objects
        Rotator* rotator = boxNode->CreateComponent<Rotator>();
        rotator->SetRotationSpeed(Vector3(10.0f, 20.0f, 30.0f));
    }
    
    // Create the camera. Let the starting position be at the world origin. As the fog limits maximum visible distance, we can
    // bring the far clip plane closer for more effective culling of distant objects
    cameraNode_ = scene_->CreateChild("Camera");
    Camera* camera = cameraNode_->CreateComponent<Camera>();
    camera->SetFarClip(100.0f);
    
    // Create a point light to the camera scene node
    Light* light = cameraNode_->CreateComponent<Light>();
    light->SetLightType(LIGHT_POINT);
    light->SetRange(30.0f);
}
开发者ID:Boshin,项目名称:Urho3D,代码行数:54,代码来源:AnimatingScene.cpp

示例6: CreateScene

	void Sample::CreateScene()
	{
		ResourceCache* cache = GetSubsystem<ResourceCache>();

		scene_ = new Scene(context_);


		sceneHierarchyWindow_->SetScene(scene_);
		// Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
		// Also create a DebugRenderer component so that we can draw debug geometry
		scene_->CreateComponent<Octree>();
		scene_->CreateComponent<DebugRenderer>();

		// Create a Zone component for ambient lighting & fog control
		Node* zoneNode = scene_->CreateChild("Zone");
		Zone* zone = zoneNode->CreateComponent<Zone>();
		zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
		zone->SetAmbientColor(Color(0.5f, 0.5f, 0.5f));
		zone->SetFogStart(100.0f);
		zone->SetFogEnd(300.0f);

		// Create a directional light without shadows
		Node* lightNode = scene_->CreateChild("DirectionalLight");
		lightNode->SetDirection(Vector3(0.5f, -1.0f, 0.5f));
		Light* light = lightNode->CreateComponent<Light>();
		light->SetLightType(LIGHT_DIRECTIONAL);
		light->SetColor(Color(0.2f, 0.2f, 0.2f));
		light->SetSpecularIntensity(1.0f);

		// Create a "floor" consisting of several tiles
		for (int y = -5; y <= 5; ++y)
		{
			for (int x = -5; x <= 5; ++x)
			{
				Node* floorNode = scene_->CreateChild("FloorTile");
				floorNode->SetPosition(Vector3(x * 20.5f, -0.5f, y * 20.5f));
				floorNode->SetScale(Vector3(20.0f, 1.0f, 20.f));
				StaticModel* floorObject = floorNode->CreateComponent<StaticModel>();
				floorObject->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
				floorObject->SetMaterial(cache->GetResource<Material>("Materials/Stone.xml"));
			}
		}

		// Create the camera. Limit far clip distance to match the fog
		camNode_ = scene_->CreateChild("Camera");
		Camera* camera = camNode_->CreateComponent<Camera>();
		camera->SetFarClip(1300.0f);

		// Set an initial position for the camera scene node above the plane
		camNode_->SetPosition(Vector3(0.0f, 5.0f, 0.0f));
	}
开发者ID:lyz4534,项目名称:Urho3DSamples,代码行数:51,代码来源:Sample.cpp

示例7: CreateScene

void MultipleViewports::CreateScene()
{
    ResourceCache* cache = GetSubsystem<ResourceCache>();
    
    scene_ = new Scene(context_);
    
    // Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
    // Also create a DebugRenderer component so that we can draw debug geometry
    scene_->CreateComponent<Octree>();
    scene_->CreateComponent<DebugRenderer>();
    
    // Create scene node & StaticModel component for showing a static plane
    Node* planeNode = scene_->CreateChild("Plane");
    planeNode->SetScale(Vector3(100.0f, 1.0f, 100.0f));
    StaticModel* planeObject = planeNode->CreateComponent<StaticModel>();
    planeObject->SetModel(cache->GetResource<Model>("Models/Plane.mdl"));
    planeObject->SetMaterial(cache->GetResource<Material>("Materials/StoneTiled.xml"));
    
    // Create a Zone component for ambient lighting & fog control
    Node* zoneNode = scene_->CreateChild("Zone");
    Zone* zone = zoneNode->CreateComponent<Zone>();
    zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
    zone->SetAmbientColor(Color(0.15f, 0.15f, 0.15f));
    zone->SetFogColor(Color(0.5f, 0.5f, 0.7f));
    zone->SetFogStart(100.0f);
    zone->SetFogEnd(300.0f);
    
    // Create a directional light to the world. Enable cascaded shadows on it
    Node* lightNode = scene_->CreateChild("DirectionalLight");
    lightNode->SetDirection(Vector3(0.6f, -1.0f, 0.8f));
    Light* light = lightNode->CreateComponent<Light>();
    light->SetLightType(LIGHT_DIRECTIONAL);
    light->SetCastShadows(true);
    light->SetShadowBias(BiasParameters(0.00025f, 0.5f));
    // Set cascade splits at 10, 50 and 200 world units, fade shadows out at 80% of maximum shadow distance
    light->SetShadowCascade(CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f));

    // Create some mushrooms
    const unsigned NUM_MUSHROOMS = 240;
    for (unsigned i = 0; i < NUM_MUSHROOMS; ++i)
    {
        Node* mushroomNode = scene_->CreateChild("Mushroom");
        mushroomNode->SetPosition(Vector3(Random(90.0f) - 45.0f, 0.0f, Random(90.0f) - 45.0f));
        mushroomNode->SetRotation(Quaternion(0.0f, Random(360.0f), 0.0f));
        mushroomNode->SetScale(0.5f + Random(2.0f));
        StaticModel* mushroomObject = mushroomNode->CreateComponent<StaticModel>();
        mushroomObject->SetModel(cache->GetResource<Model>("Models/Mushroom.mdl"));
        mushroomObject->SetMaterial(cache->GetResource<Material>("Materials/Mushroom.xml"));
        mushroomObject->SetCastShadows(true);
    }
    
    // Create randomly sized boxes. If boxes are big enough, make them occluders
    const unsigned NUM_BOXES = 20;
    for (unsigned i = 0; i < NUM_BOXES; ++i)
    {
        Node* boxNode = scene_->CreateChild("Box");
        float size = 1.0f + Random(10.0f);
        boxNode->SetPosition(Vector3(Random(80.0f) - 40.0f, size * 0.5f, Random(80.0f) - 40.0f));
        boxNode->SetScale(size);
        StaticModel* boxObject = boxNode->CreateComponent<StaticModel>();
        boxObject->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
        boxObject->SetMaterial(cache->GetResource<Material>("Materials/Stone.xml"));
        boxObject->SetCastShadows(true);
        if (size >= 3.0f)
            boxObject->SetOccluder(true);
    }
    
    // Create the cameras. Limit far clip distance to match the fog
    cameraNode_ = scene_->CreateChild("Camera");
    Camera* camera = cameraNode_->CreateComponent<Camera>();
    camera->SetFarClip(300.0f);
    
    // Parent the rear camera node to the front camera node and turn it 180 degrees to face backward
    // Here, we use the angle-axis constructor for Quaternion instead of the usual Euler angles
    rearCameraNode_ = cameraNode_->CreateChild("RearCamera");
    rearCameraNode_->Rotate(Quaternion(180.0f, Vector3::UP));
    Camera* rearCamera = rearCameraNode_->CreateComponent<Camera>();
    rearCamera->SetFarClip(300.0f);
    // Because the rear viewport is rather small, disable occlusion culling from it. Use the camera's
    // "view override flags" for this. We could also disable eg. shadows or force low material quality
    // if we wanted
    rearCamera->SetViewOverrideFlags(VO_DISABLE_OCCLUSION);
    
    // Set an initial position for the front camera scene node above the plane
    cameraNode_->SetPosition(Vector3(0.0f, 5.0f, 0.0f));
}
开发者ID:Hevedy,项目名称:Urho3D,代码行数:86,代码来源:MultipleViewports.cpp

示例8: Scene

void Urho3DTemplate::CreateScene()
{
    ResourceCache* cache = GetSubsystem<ResourceCache>();

    scene_ = new Scene(context_);

    //Create octree, use default volume (-1000, -1000, -1000) to (1000,1000,1000)
    //Also create a DebugRenderer component so that we can draw debug geometry
    scene_->CreateComponent<Octree>();
    scene_->CreateComponent<DebugRenderer>();

    //Create scene node & StaticModel component for showing a static plane
    Node* planeNode = scene_->CreateChild("Plane");
    planeNode->SetScale(Vector3(100.0f, 1.0f, 100.0f));
    StaticModel* planeObject = planeNode->CreateComponent<StaticModel>();
    planeObject->SetModel(cache->GetResource<Model>("Models/Plane.mdl"));
    planeObject->SetMaterial(cache->GetResource<Material>("Materials/StoneTiled.xml"));

    //Create a Zone component for ambient lighting & fog control
    Node* zoneNode = scene_->CreateChild("Zone");
    Zone* zone = zoneNode->CreateComponent<Zone>();
    zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
    zone->SetAmbientColor(Color(0.15f, 0.15f, 0.15f));
    zone->SetFogColor(Color(0.5f, 0.5f, 0.7f));
    zone->SetFogStart(100.0f);
    zone->SetFogEnd(300.0f);

    //Create a directional light to the world. Enable cascaded shadows on it
    Node* lightNode = scene_->CreateChild("DirectionalLight");
    lightNode->SetDirection(Vector3(0.6f, -1.0f, 0.8f));
    Light* light = lightNode->CreateComponent<Light>();
    light->SetLightType(LIGHT_DIRECTIONAL);
    light->SetCastShadows(true);
    light->SetShadowBias(BiasParameters(0.00025f, 0.5f));

    //Set cascade splits at 10, 50, 200 world unitys, fade shadows at 80% of maximum shadow distance
    light->SetShadowCascade(CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f));

    //Create some mushrooms
    const unsigned NUM_MUSHROOMS = 100;
    for (unsigned i = 0; i < NUM_MUSHROOMS; ++i)
        CreateMushroom(Vector3(Random(90.0f) - 45.0f, 0.0f, Random(90.0f) - 45.0f));

    //Create randomly sized boxes. If boxes are big enough make them occluders
    const unsigned NUM_BOXES = 20;
    for (unsigned i = 0; i <NUM_BOXES; ++i)
    {
        Node* boxNode = scene_->CreateChild("Box");
        float size = 1.0f + Random(10.0f);
        boxNode->SetPosition(Vector3(Random(80.0f) - 40.0f, size * 0.5f, Random(80.0f) - 40.0f));
        boxNode->SetScale(size);
        StaticModel* boxObject = boxNode->CreateComponent<StaticModel>();
        boxObject->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
        boxObject->SetMaterial(cache->GetResource<Material>("Materials/Stone.xml"));
        boxObject->SetCastShadows(true);
        if (size >= 3.0f)
            boxObject->SetOccluder(true);
    }

    //Create Jack node that will follow the path
    jackNode_ = scene_->CreateChild("Jack");
    jackNode_->SetPosition(Vector3(-5.0f, 0.0f, 20.0f));
    AnimatedModel* modelObject = jackNode_->CreateComponent<AnimatedModel>();
    modelObject->SetModel(cache->GetResource<Model>("Model/Jack.mdl"));
    modelObject->SetMaterial(cache->GetResource<Material>("Materials/Jack.xml"));
    modelObject->SetCastShadows(true);

    //Create the camera. Limit far clip distance to match the fog
    cameraNode_ = scene_->CreateChild("Camera");
    Camera* camera = cameraNode_->CreateComponent<Camera>();
    camera->SetFarClip(300.0f);

    //Set an initial position for the camera scene node above the plane
    cameraNode_->SetPosition(Vector3(0.0f, 5.0f, 0.0f));
}
开发者ID:richelbilderbeek,项目名称:TestVoxelWidget,代码行数:75,代码来源:qtvoxelwidget.cpp

示例9: CreateScene

void Ragdolls::CreateScene()
{
    ResourceCache* cache = GetContext()->m_ResourceCache.get();

    scene_ = new Scene(GetContext());

    // Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
    // Create a physics simulation world with default parameters, which will update at 60fps. Like the Octree must
    // exist before creating drawable components, the PhysicsWorld must exist before creating physics components.
    // Finally, create a DebugRenderer component so that we can draw physics debug geometry
    scene_->CreateComponent<Octree>();
    scene_->CreateComponent<PhysicsWorld>();
    scene_->CreateComponent<DebugRenderer>();

    // Create a Zone component for ambient lighting & fog control
    Node* zoneNode = scene_->CreateChild("Zone");
    Zone* zone = zoneNode->CreateComponent<Zone>();
    zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
    zone->SetAmbientColor(Color(0.15f, 0.15f, 0.15f));
    zone->SetFogColor(Color(0.5f, 0.5f, 0.7f));
    zone->SetFogStart(100.0f);
    zone->SetFogEnd(300.0f);

    // Create a directional light to the world. Enable cascaded shadows on it
    Node* lightNode = scene_->CreateChild("DirectionalLight");
    lightNode->SetDirection(Vector3(0.6f, -1.0f, 0.8f));
    Light* light = lightNode->CreateComponent<Light>();
    light->SetLightType(LIGHT_DIRECTIONAL);
    light->SetCastShadows(true);
    light->SetShadowBias(BiasParameters(0.00025f, 0.5f));
    // Set cascade splits at 10, 50 and 200 world units, fade shadows out at 80% of maximum shadow distance
    light->SetShadowCascade(CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f));

    {
        // Create a floor object, 500 x 500 world units. Adjust position so that the ground is at zero Y
        Node* floorNode = scene_->CreateChild("Floor");
        floorNode->SetPosition(Vector3(0.0f, -0.5f, 0.0f));
        floorNode->SetScale(Vector3(500.0f, 1.0f, 500.0f));
        StaticModel* floorObject = floorNode->CreateComponent<StaticModel>();
        floorObject->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
        floorObject->SetMaterial(cache->GetResource<Material>("Materials/StoneTiled.xml"));

        // Make the floor physical by adding RigidBody and CollisionShape components
        RigidBody* body = floorNode->CreateComponent<RigidBody>();
        // We will be spawning spherical objects in this sample. The ground also needs non-zero rolling friction so that
        // the spheres will eventually come to rest
        body->SetRollingFriction(0.15f);
        CollisionShape* shape = floorNode->CreateComponent<CollisionShape>();
        // Set a box shape of size 1 x 1 x 1 for collision. The shape will be scaled with the scene node scale, so the
        // rendering and physics representation sizes should match (the box model is also 1 x 1 x 1.)
        shape->SetBox(Vector3::ONE);
    }

    // Create animated models
    for (int z = -1; z <= 1; ++z)
    {
        for (int x = -4; x <= 4; ++x)
        {
            Node* modelNode = scene_->CreateChild("Jack");
            modelNode->SetPosition(Vector3(x * 5.0f, 0.0f, z * 5.0f));
            modelNode->SetRotation(Quaternion(0.0f, 180.0f, 0.0f));
            AnimatedModel* modelObject = modelNode->CreateComponent<AnimatedModel>();
            modelObject->SetModel(cache->GetResource<Model>("Models/Jack.mdl"));
            modelObject->SetMaterial(cache->GetResource<Material>("Materials/Jack.xml"));
            modelObject->SetCastShadows(true);
            // Set the model to also update when invisible to avoid staying invisible when the model should come into
            // view, but does not as the bounding box is not updated
            modelObject->SetUpdateInvisible(true);

            // Create a rigid body and a collision shape. These will act as a trigger for transforming the
            // model into a ragdoll when hit by a moving object
            RigidBody* body = modelNode->CreateComponent<RigidBody>();
            // The Trigger mode makes the rigid body only detect collisions, but impart no forces on the
            // colliding objects
            body->SetTrigger(true);
            CollisionShape* shape = modelNode->CreateComponent<CollisionShape>();
            // Create the capsule shape with an offset so that it is correctly aligned with the model, which
            // has its origin at the feet
            shape->SetCapsule(0.7f, 2.0f, Vector3(0.0f, 1.0f, 0.0f));

            // Create a custom component that reacts to collisions and creates the ragdoll
            modelNode->CreateComponent<CreateRagdoll>();
        }
    }

    // Create the camera. Limit far clip distance to match the fog. Note: now we actually create the camera node outside
    // the scene, because we want it to be unaffected by scene load / save
    cameraNode_ = new Node(GetContext());
    Camera* camera = cameraNode_->CreateComponent<Camera>();
    camera->setFarClipDistance(300.0f);

    // Set an initial position for the camera scene node above the floor
    cameraNode_->SetPosition(Vector3(0.0f, 3.0f, -20.0f));
}
开发者ID:nemerle,项目名称:lutefisk3d,代码行数:94,代码来源:Ragdolls.cpp

示例10: CreateScene

void Navigation::CreateScene()
{
    ResourceCache* cache = GetSubsystem<ResourceCache>();
    
    scene_ = new Scene(context_);
    
    // Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
    // Also create a DebugRenderer component so that we can draw debug geometry
    scene_->CreateComponent<Octree>();
    scene_->CreateComponent<DebugRenderer>();
    
    // Create scene node & StaticModel component for showing a static plane
    Node* planeNode = scene_->CreateChild("Plane");
    planeNode->SetScale(Vector3(100.0f, 1.0f, 100.0f));
    StaticModel* planeObject = planeNode->CreateComponent<StaticModel>();
    planeObject->SetModel(cache->GetResource<Model>("Models/Plane.mdl"));
    planeObject->SetMaterial(cache->GetResource<Material>("Materials/StoneTiled.xml"));
    
    // Create a Zone component for ambient lighting & fog control
    Node* zoneNode = scene_->CreateChild("Zone");
    Zone* zone = zoneNode->CreateComponent<Zone>();
    zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
    zone->SetAmbientColor(Color(0.15f, 0.15f, 0.15f));
    zone->SetFogColor(Color(0.5f, 0.5f, 0.7f));
    zone->SetFogStart(100.0f);
    zone->SetFogEnd(300.0f);
    
    // Create a directional light to the world. Enable cascaded shadows on it
    Node* lightNode = scene_->CreateChild("DirectionalLight");
    lightNode->SetDirection(Vector3(0.6f, -1.0f, 0.8f));
    Light* light = lightNode->CreateComponent<Light>();
    light->SetLightType(LIGHT_DIRECTIONAL);
    light->SetCastShadows(true);
    light->SetShadowBias(BiasParameters(0.0001f, 0.5f));
    // Set cascade splits at 10, 50 and 200 world units, fade shadows out at 80% of maximum shadow distance
    light->SetShadowCascade(CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f));
    
    // Create some mushrooms
    const unsigned NUM_MUSHROOMS = 100;
    for (unsigned i = 0; i < NUM_MUSHROOMS; ++i)
        CreateMushroom(Vector3(Random(90.0f) - 45.0f, 0.0f, Random(90.0f) - 45.0f));
    
    // Create randomly sized boxes. If boxes are big enough, make them occluders
    const unsigned NUM_BOXES = 20;
    for (unsigned i = 0; i < NUM_BOXES; ++i)
    {
        Node* boxNode = scene_->CreateChild("Box");
        float size = 1.0f + Random(10.0f);
        boxNode->SetPosition(Vector3(Random(80.0f) - 40.0f, size * 0.5f, Random(80.0f) - 40.0f));
        boxNode->SetScale(size);
        StaticModel* boxObject = boxNode->CreateComponent<StaticModel>();
        boxObject->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
        boxObject->SetMaterial(cache->GetResource<Material>("Materials/Stone.xml"));
        boxObject->SetCastShadows(true);
        if (size >= 3.0f)
            boxObject->SetOccluder(true);
    }
    
    // Create a NavigationMesh component to the scene root
    NavigationMesh* navMesh = scene_->CreateComponent<NavigationMesh>();
    // Create a Navigable component to the scene root. This tags all of the geometry in the scene as being part of the
    // navigation mesh. By default this is recursive, but the recursion could be turned off from Navigable
    scene_->CreateComponent<Navigable>();
    // Add padding to the navigation mesh in Y-direction so that we can add objects on top of the tallest boxes
    // in the scene and still update the mesh correctly
    navMesh->SetPadding(Vector3(0.0f, 10.0f, 0.0f));
    // Now build the navigation geometry. This will take some time. Note that the navigation mesh will prefer to use
    // physics geometry from the scene nodes, as it often is simpler, but if it can not find any (like in this example)
    // it will use renderable geometry instead
    navMesh->Build();
    
    // Create the camera. Limit far clip distance to match the fog
    cameraNode_ = scene_->CreateChild("Camera");
    Camera* camera = cameraNode_->CreateComponent<Camera>();
    camera->SetFarClip(300.0f);
    
    // Set an initial position for the camera scene node above the plane
    cameraNode_->SetPosition(Vector3(0.0f, 5.0f, 0.0f));
}
开发者ID:PeteX,项目名称:Urho3D,代码行数:79,代码来源:Navigation.cpp

示例11: CreateScene

void Water::CreateScene()
{
    ResourceCache* cache = GetContext()->m_ResourceCache.get();

    scene_ = new Scene(GetContext());

    // Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
    scene_->CreateComponent<Octree>();

    // Create a Zone component for ambient lighting & fog control
    Node* zoneNode = scene_->CreateChild("Zone");
    Zone* zone = zoneNode->CreateComponent<Zone>();
    zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
    zone->SetAmbientColor(Color(0.15f, 0.15f, 0.15f));
    zone->SetFogColor(Color(1.0f, 1.0f, 1.0f));
    zone->SetFogStart(500.0f);
    zone->SetFogEnd(750.0f);

    // Create a directional light to the world. Enable cascaded shadows on it
    Node* lightNode = scene_->CreateChild("DirectionalLight");
    lightNode->SetDirection(Vector3(0.6f, -1.0f, 0.8f));
    Light* light = lightNode->CreateComponent<Light>();
    light->SetLightType(LIGHT_DIRECTIONAL);
    light->SetCastShadows(true);
    light->SetShadowBias(BiasParameters(0.00025f, 0.5f));
    light->SetShadowCascade(CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f));
    light->SetSpecularIntensity(0.5f);
    // Apply slightly overbright lighting to match the skybox
    light->SetColor(Color(1.2f, 1.2f, 1.2f));

    // Create skybox. The Skybox component is used like StaticModel, but it will be always located at the camera, giving the
    // illusion of the box planes being far away. Use just the ordinary Box model and a suitable material, whose shader will
    // generate the necessary 3D texture coordinates for cube mapping
    Node* skyNode = scene_->CreateChild("Sky");
    skyNode->SetScale(500.0f); // The scale actually does not matter
    Skybox* skybox = skyNode->CreateComponent<Skybox>();
    skybox->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
    skybox->SetMaterial(cache->GetResource<Material>("Materials/Skybox.xml"));

    // Create heightmap terrain
    Node* terrainNode = scene_->CreateChild("Terrain");
    terrainNode->SetPosition(Vector3(0.0f, 0.0f, 0.0f));
    Terrain* terrain = terrainNode->CreateComponent<Terrain>();
    terrain->SetPatchSize(64);
    terrain->SetSpacing(Vector3(2.0f, 0.5f, 2.0f)); // Spacing between vertices and vertical resolution of the height map
    terrain->SetSmoothing(true);
    terrain->SetHeightMap(cache->GetResource<Image>("Textures/HeightMap.png"));
    terrain->SetMaterial(cache->GetResource<Material>("Materials/Terrain.xml"));
    // The terrain consists of large triangles, which fits well for occlusion rendering, as a hill can occlude all
    // terrain patches and other objects behind it
    terrain->SetOccluder(true);

    // Create 1000 boxes in the terrain. Always face outward along the terrain normal
    unsigned NUM_OBJECTS = 1000;
    for (unsigned i = 0; i < NUM_OBJECTS; ++i)
    {
        Node* objectNode = scene_->CreateChild("Box");
        Vector3 position(Random(2000.0f) - 1000.0f, 0.0f, Random(2000.0f) - 1000.0f);
        position.y_ = terrain->GetHeight(position) + 2.25f;
        objectNode->SetPosition(position);
        // Create a rotation quaternion from up vector to terrain normal
        objectNode->SetRotation(Quaternion(Vector3(0.0f, 1.0f, 0.0f), terrain->GetNormal(position)));
        objectNode->SetScale(5.0f);
        StaticModel* object = objectNode->CreateComponent<StaticModel>();
        object->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
        object->SetMaterial(cache->GetResource<Material>("Materials/Stone.xml"));
        object->SetCastShadows(true);
    }
    Node* shipNode = scene_->CreateChild("Ship");
    shipNode->SetPosition(Vector3(0.0f, 4.6f, 0.0f));
    //shipNode->SetRotation(Quaternion(0.0f, Random(360.0f), 0.0f));
    shipNode->SetScale(0.5f + Random(2.0f));
    StaticModel* shipObject = shipNode->CreateComponent<StaticModel>();
    shipObject->SetModel(cache->GetResource<Model>("Models/ship04.mdl"));
    shipObject->SetMaterial(0,cache->GetResource<Material>("Materials/ship04_Material0.xml"));
    shipObject->SetMaterial(1,cache->GetResource<Material>("Materials/ship04_Material1.xml"));
    shipObject->SetMaterial(2,cache->GetResource<Material>("Materials/ship04_Material2.xml"));
    shipObject->SetCastShadows(true);

    // Create a water plane object that is as large as the terrain
    waterNode_ = scene_->CreateChild("Water");
    waterNode_->SetScale(Vector3(2048.0f, 1.0f, 2048.0f));
    waterNode_->SetPosition(Vector3(0.0f, 5.0f, 0.0f));
    StaticModel* water = waterNode_->CreateComponent<StaticModel>();
    water->SetModel(cache->GetResource<Model>("Models/Plane.mdl"));
    water->SetMaterial(cache->GetResource<Material>("Materials/Water.xml"));
    // Set a different viewmask on the water plane to be able to hide it from the reflection camera
    water->SetViewMask(0x80000000);

    // Create the camera. Set far clip to match the fog. Note: now we actually create the camera node outside
    // the scene, because we want it to be unaffected by scene load / save
    cameraNode_ = new Node(GetContext());
    Camera* camera = cameraNode_->CreateComponent<Camera>();
    camera->setFarClipDistance(750.0f);

    // Set an initial position for the camera scene node above the ground
    cameraNode_->SetPosition(Vector3(0.0f, 7.0f, -20.0f));
}
开发者ID:nemerle,项目名称:lutefisk3d,代码行数:98,代码来源:Water.cpp

示例12: CreateScene

void Physics::CreateScene()
{
    ResourceCache* cache = GetSubsystem<ResourceCache>();

    scene_ = new Scene(context_);

    // Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
    // Create a physics simulation world with default parameters, which will update at 60fps. Like the Octree must
    // exist before creating drawable components, the PhysicsWorld must exist before creating physics components.
    // Finally, create a DebugRenderer component so that we can draw physics debug geometry
    scene_->CreateComponent<Octree>();
    scene_->CreateComponent<PhysicsWorld>();
    scene_->CreateComponent<DebugRenderer>();

    // Create a Zone component for ambient lighting & fog control
    Node* zoneNode = scene_->CreateChild("Zone");
    Zone* zone = zoneNode->CreateComponent<Zone>();
    zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
    zone->SetAmbientColor(Color(0.15f, 0.15f, 0.15f));
    zone->SetFogColor(Color(1.0f, 1.0f, 1.0f));
    zone->SetFogStart(300.0f);
    zone->SetFogEnd(500.0f);

    // Create a directional light to the world. Enable cascaded shadows on it
    Node* lightNode = scene_->CreateChild("DirectionalLight");
    lightNode->SetDirection(Vector3(0.6f, -1.0f, 0.8f));
    Light* light = lightNode->CreateComponent<Light>();
    light->SetLightType(LIGHT_DIRECTIONAL);
    light->SetCastShadows(true);
    light->SetShadowBias(BiasParameters(0.00025f, 0.5f));
    // Set cascade splits at 10, 50 and 200 world units, fade shadows out at 80% of maximum shadow distance
    light->SetShadowCascade(CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f));

    // Create skybox. The Skybox component is used like StaticModel, but it will be always located at the camera, giving the
    // illusion of the box planes being far away. Use just the ordinary Box model and a suitable material, whose shader will
    // generate the necessary 3D texture coordinates for cube mapping
    Node* skyNode = scene_->CreateChild("Sky");
    skyNode->SetScale(500.0f); // The scale actually does not matter
    Skybox* skybox = skyNode->CreateComponent<Skybox>();
    skybox->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
    skybox->SetMaterial(cache->GetResource<Material>("Materials/Skybox.xml"));

    {
        // Create a floor object, 1000 x 1000 world units. Adjust position so that the ground is at zero Y
        Node* floorNode = scene_->CreateChild("Floor");
        floorNode->SetPosition(Vector3(0.0f, -0.5f, 0.0f));
        floorNode->SetScale(Vector3(1000.0f, 1.0f, 1000.0f));
        StaticModel* floorObject = floorNode->CreateComponent<StaticModel>();
        floorObject->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
        floorObject->SetMaterial(cache->GetResource<Material>("Materials/StoneTiled.xml"));

        // Make the floor physical by adding RigidBody and CollisionShape components. The RigidBody's default
        // parameters make the object static (zero mass.) Note that a CollisionShape by itself will not participate
        // in the physics simulation
        /*RigidBody* body = */floorNode->CreateComponent<RigidBody>();
        CollisionShape* shape = floorNode->CreateComponent<CollisionShape>();
        // Set a box shape of size 1 x 1 x 1 for collision. The shape will be scaled with the scene node scale, so the
        // rendering and physics representation sizes should match (the box model is also 1 x 1 x 1.)
        shape->SetBox(Vector3::ONE);
    }

    {
        // Create a pyramid of movable physics objects
        for (int y = 0; y < 8; ++y)
        {
            for (int x = -y; x <= y; ++x)
            {
                Node* boxNode = scene_->CreateChild("Box");
                boxNode->SetPosition(Vector3((float)x, -(float)y + 8.0f, 0.0f));
                StaticModel* boxObject = boxNode->CreateComponent<StaticModel>();
                boxObject->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
                boxObject->SetMaterial(cache->GetResource<Material>("Materials/StoneEnvMapSmall.xml"));
                boxObject->SetCastShadows(true);

                // Create RigidBody and CollisionShape components like above. Give the RigidBody mass to make it movable
                // and also adjust friction. The actual mass is not important; only the mass ratios between colliding
                // objects are significant
                RigidBody* body = boxNode->CreateComponent<RigidBody>();
                body->SetMass(1.0f);
                body->SetFriction(0.75f);
                CollisionShape* shape = boxNode->CreateComponent<CollisionShape>();
                shape->SetBox(Vector3::ONE);
            }
        }
    }

    // Create the camera. Set far clip to match the fog. Note: now we actually create the camera node outside the scene, because
    // we want it to be unaffected by scene load / save
    cameraNode_ = new Node(context_);
    Camera* camera = cameraNode_->CreateComponent<Camera>();
    camera->SetFarClip(500.0f);

    // Set an initial position for the camera scene node above the floor
    cameraNode_->SetPosition(Vector3(0.0f, 5.0f, -20.0f));
}
开发者ID:03050903,项目名称:Urho3D,代码行数:95,代码来源:Physics.cpp

示例13: CreateScene

void MasterControl::CreateScene()
{
    world.scene = new Scene(context_);

    world.octree = world.scene->CreateComponent<Octree>();
    physicsWorld_ = world.scene->CreateComponent<PhysicsWorld>();
    physicsWorld_->SetGravity(Vector3::ZERO);
    world.scene->CreateComponent<DebugRenderer>();

    //Create a Zone component for ambient ing & fog control
    Node* zoneNode = world.scene->CreateChild("Zone");
    Zone* zone = zoneNode->CreateComponent<Zone>();
    zone->SetBoundingBox(BoundingBox(Vector3(-100.0f, -50.0f, -100.0f),Vector3(100.0f, 0.0f, 100.0f)));
    zone->SetAmbientColor(Color(0.15f, 0.15f, 0.15f));
    zone->SetFogColor(Color(0.0f, 0.0f, 0.0f));
    zone->SetFogStart(56.8f);
    zone->SetFogEnd(61.8f);

    //Add a directional light to the world. Enable cascaded shadows on it
    Node* lightNode = world.scene->CreateChild("PointLight");
    lightNode->SetPosition(Vector3::UP*5.0);
    lightNode->SetRotation(Quaternion(90.0f, 0.0f, 0.0f));
    Light* light = lightNode->CreateComponent<Light>();
    light->SetLightType(LIGHT_DIRECTIONAL);

    light->SetBrightness(1.0f);
    light->SetRange(7.0f);
    light->SetColor(Color(1.0f, 0.9f, 0.95f));
    light->SetCastShadows(false);
    light->SetShadowBias(BiasParameters(0.00025f, 0.5f));
    //Set cascade splits at 10, 50, 200 world unitys, fade shadows at 80% of maximum shadow distance
    light->SetShadowCascade(CascadeParameters(7.0f, 23.0f, 42.0f, 500.0f, 0.8f));

    //Create cursor
    world.cursor.sceneCursor = world.scene->CreateChild("Cursor");
    //world.cursor.sceneCursor->SetPosition(Vector3(0.0f,0.0f,0.0f));
    StaticModel* cursorObject = world.cursor.sceneCursor->CreateComponent<StaticModel>();
    cursorObject->SetModel(cache_->GetResource<Model>("Resources/Models/Hexagon.mdl"));
    cursorObject->SetMaterial(cache_->GetResource<Material>("Resources/Materials/Glow.xml"));
    world.cursor.sceneCursor->SetEnabled(false);

    //Create an invisible plane for mouse raycasting
    world.voidNode = world.scene->CreateChild("Void");
    //Location is set in update since the plane moves with the camera.
    world.voidNode->SetScale(Vector3(1000.0f, 1.0f, 1000.0f));
    StaticModel* planeObject = world.voidNode->CreateComponent<StaticModel>();
    planeObject->SetModel(cache_->GetResource<Model>("Models/Plane.mdl"));
    planeObject->SetMaterial(cache_->GetResource<Material>("Resources/Materials/Invisible.xml"));

    //Create camera
    world.camera = new heXoCam(context_, this);

    //Create arena
    tileMaster_ = new TileMaster(context_, this);
    for (int i = 0; i < 6; i++){
        new ArenaEdge(context_, this, (60.0f * i)+30.0f);
    }

    spawnMaster_ = new SpawnMaster(context_, this);

    player_ = new Player(context_, this);
    apple_ = new Apple(context_, this);
    heart_ = new Heart(context_, this);
}
开发者ID:sabotage3d,项目名称:heXon,代码行数:64,代码来源:mastercontrol.cpp

示例14: Setup

//-------------------
//-------------------
void VaniaDebugEnv::Setup(SharedPtr<Scene> scene, SharedPtr<Node> cameraNode)
{

	scene_ = scene;
	cameraNode_ = cameraNode;

	ResourceCache* cache = GetSubsystem<ResourceCache>();

    // Create scene node & StaticModel component for showing a static plane
    /*Node* planeNode = scene_->CreateChild("Plane");
    planeNode->SetScale(Vector3(100.0f, 1.0f, 100.0f));
    StaticModel* planeObject = planeNode->CreateComponent<StaticModel>();
    planeObject->SetModel(cache->GetResource<Model>("Models/Plane.mdl"));
    planeObject->SetMaterial(cache->GetResource<Material>("Materials/StoneTiled.xml"));*/

    // Create a Zone component for ambient lighting & fog control
    Node* zoneNode = scene_->CreateChild("Zone");
    Zone* zone = zoneNode->CreateComponent<Zone>();
    zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
    zone->SetAmbientColor(Color(0.15f, 0.15f, 0.15f));
    zone->SetFogColor(Color(0.5f, 0.5f, 0.7f));
    zone->SetFogStart(100.0f);
    zone->SetFogEnd(300.0f);

    // Create a directional light to the world. Enable cascaded shadows on it
    Node* lightNode = scene_->CreateChild("DirectionalLight");
    lightNode->SetDirection(Vector3(0.6f, -1.0f, 0.8f));
    Light* light = lightNode->CreateComponent<Light>();
    light->SetLightType(LIGHT_DIRECTIONAL);
    light->SetCastShadows(true);
    light->SetShadowBias(BiasParameters(0.00025f, 0.5f));
    // Set cascade splits at 10, 50 and 200 world units, fade shadows out at 80% of maximum shadow distance
    light->SetShadowCascade(CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f));

    // Create animated models
    /*const unsigned NUM_MODELS = 100;
    const float MODEL_MOVE_SPEED = 2.0f;
    const float MODEL_ROTATE_SPEED = 100.0f;
    const BoundingBox bounds(Vector3(-47.0f, 0.0f, -47.0f), Vector3(47.0f, 0.0f, 47.0f));

    for (unsigned i = 0; i < NUM_MODELS; ++i)
    {
        Node* modelNode = scene_->CreateChild("Jack");
        modelNode->SetPosition(Vector3(Random(90.0f) - 45.0f, 0.0f, Random(90.0f) - 45.0f));
        modelNode->SetRotation(Quaternion(0.0f, Random(360.0f), 0.0f));
        AnimatedModel* modelObject = modelNode->CreateComponent<AnimatedModel>();
        modelObject->SetModel(cache->GetResource<Model>("Models/Jack.mdl"));
        modelObject->SetMaterial(cache->GetResource<Material>("Materials/Jack.xml"));
        modelObject->SetCastShadows(true);

        // Create an AnimationState for a walk animation. Its time position will need to be manually updated to advance the
        // animation, The alternative would be to use an AnimationController component which updates the animation automatically,
        // but we need to update the model's position manually in any case
        Animation* walkAnimation = cache->GetResource<Animation>("Models/Jack_Walk.ani");
        AnimationState* state = modelObject->AddAnimationState(walkAnimation);
        // The state would fail to create (return null) if the animation was not found
        if (state)
        {
            // Enable full blending weight and looping
            state->SetWeight(1.0f);
            state->SetLooped(true);
        }

        // Create our custom Mover component that will move & animate the model during each frame's update
        //Mover* mover = modelNode->CreateComponent<Mover>();
        //mover->SetParameters(MODEL_MOVE_SPEED, MODEL_ROTATE_SPEED, bounds);
    }*/
    {

        Node* floorNode = scene_->CreateChild("Floor");
        floorNode->SetPosition(Vector3(0.0f, -1.0f, 0.0f));
        floorNode->SetScale(Vector3(1000.0f, 1.0f, 1000.0f));
        StaticModel* floorObject = floorNode->CreateComponent<StaticModel>();
        floorObject->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
        floorObject->SetMaterial(cache->GetResource<Material>("Materials/StoneTiled.xml"));
        
        // Make the floor physical by adding RigidBody and CollisionShape components. The RigidBody's default
        // parameters make the object static (zero mass.) Note that a CollisionShape by itself will not participate
        // in the physics simulation
        RigidBody* body = floorNode->CreateComponent<RigidBody>();
        CollisionShape* shape = floorNode->CreateComponent<CollisionShape>();
        body->SetCollisionLayer(32);
        body->SetCollisionMask(63);
        // Set a box shape of size 1 x 1 x 1 for collision. The shape will be scaled with the scene node scale, so the
        // rendering and physics representation sizes should match (the box model is also 1 x 1 x 1.)
        shape->SetBox(Vector3::ONE);
    }

   
    /*Node* stateNode = scene_->CreateChild("state");
    stateNode->SetPosition(positions_[0]);
    StaticModel* stateModel = stateNode->CreateComponent<StaticModel>();
    stateModel->SetModel( cache->GetResource<Model>(String("Models/States/")+states_[0]) );*/

    // Create the camera. Limit far clip distance to match the fog
    //cameraNode_ = scene_->CreateChild("Camera");
    //Camera* camera = cameraNode_->CreateComponent<Camera>();
    //camera->SetFarClip(300.0f);
//.........这里部分代码省略.........
开发者ID:ghidra,项目名称:urho_vania,代码行数:101,代码来源:VaniaDebugEnv.cpp

示例15: CreateScene

void VehicleDemo::CreateScene()
{
    ResourceCache* cache = GetSubsystem<ResourceCache>();
    
    scene_ = new Scene(context_);
    
    // Create scene subsystem components
    scene_->CreateComponent<Octree>();
    scene_->CreateComponent<PhysicsWorld>();
    
    // Create camera and define viewport. We will be doing load / save, so it's convenient to create the camera outside the scene,
    // so that it won't be destroyed and recreated, and we don't have to redefine the viewport on load
    cameraNode_ = new Node(context_);
    Camera* camera = cameraNode_->CreateComponent<Camera>();
    camera->SetFarClip(500.0f);
    GetSubsystem<Renderer>()->SetViewport(0, new Viewport(context_, scene_, camera));
    
    // Create static scene content. First create a zone for ambient lighting and fog control
    Node* zoneNode = scene_->CreateChild("Zone");
    Zone* zone = zoneNode->CreateComponent<Zone>();
    zone->SetAmbientColor(Color(0.15f, 0.15f, 0.15f));
    zone->SetFogColor(Color(0.5f, 0.5f, 0.7f));
    zone->SetFogStart(300.0f);
    zone->SetFogEnd(500.0f);
    zone->SetBoundingBox(BoundingBox(-2000.0f, 2000.0f));
    
    // Create a directional light with cascaded shadow mapping
    Node* lightNode = scene_->CreateChild("DirectionalLight");
    lightNode->SetDirection(Vector3(0.3f, -0.5f, 0.425f));
    Light* light = lightNode->CreateComponent<Light>();
    light->SetLightType(LIGHT_DIRECTIONAL);
    light->SetCastShadows(true);
    light->SetShadowBias(BiasParameters(0.00025f, 0.5f));
    light->SetShadowCascade(CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f));
    light->SetSpecularIntensity(0.5f);
    
    // Create heightmap terrain with collision
    Node* terrainNode = scene_->CreateChild("Terrain");
    terrainNode->SetPosition(Vector3::ZERO);
    Terrain* terrain = terrainNode->CreateComponent<Terrain>();
    terrain->SetPatchSize(64);
    terrain->SetSpacing(Vector3(2.0f, 0.1f, 2.0f)); // Spacing between vertices and vertical resolution of the height map
    terrain->SetSmoothing(true);
    terrain->SetHeightMap(cache->GetResource<Image>("Textures/HeightMap.png"));
    terrain->SetMaterial(cache->GetResource<Material>("Materials/Terrain.xml"));
    // The terrain consists of large triangles, which fits well for occlusion rendering, as a hill can occlude all
    // terrain patches and other objects behind it
    terrain->SetOccluder(true);
    
    RigidBody* body = terrainNode->CreateComponent<RigidBody>();
    body->SetCollisionLayer(2); // Use layer bitmask 2 for static geometry
    CollisionShape* shape = terrainNode->CreateComponent<CollisionShape>();
    shape->SetTerrain();
    
    // Create 1000 mushrooms in the terrain. Always face outward along the terrain normal
    const unsigned NUM_MUSHROOMS = 1000;
    for (unsigned i = 0; i < NUM_MUSHROOMS; ++i)
    {
        Node* objectNode = scene_->CreateChild("Mushroom");
        Vector3 position(Random(2000.0f) - 1000.0f, 0.0f, Random(2000.0f) - 1000.0f);
        position.y_ = terrain->GetHeight(position) - 0.1f;
        objectNode->SetPosition(position);
        // Create a rotation quaternion from up vector to terrain normal
        objectNode->SetRotation(Quaternion(Vector3::UP, terrain->GetNormal(position)));
        objectNode->SetScale(3.0f);
        StaticModel* object = objectNode->CreateComponent<StaticModel>();
        object->SetModel(cache->GetResource<Model>("Models/Mushroom.mdl"));
        object->SetMaterial(cache->GetResource<Material>("Materials/Mushroom.xml"));
        object->SetCastShadows(true);
        
        RigidBody* body = objectNode->CreateComponent<RigidBody>();
        body->SetCollisionLayer(2);
        CollisionShape* shape = objectNode->CreateComponent<CollisionShape>();
        shape->SetTriangleMesh(object->GetModel(), 0);
    }
}
开发者ID:3dicc,项目名称:Urho3D,代码行数:76,代码来源:VehicleDemo.cpp


注:本文中的Zone::SetAmbientColor方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。