本文整理汇总了C++中CModel::GetMaterial方法的典型用法代码示例。如果您正苦于以下问题:C++ CModel::GetMaterial方法的具体用法?C++ CModel::GetMaterial怎么用?C++ CModel::GetMaterial使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类CModel
的用法示例。
在下文中一共展示了CModel::GetMaterial方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: Render
void ShaderModelRenderer::Render(const RenderModifierPtr& modifier, const CShaderDefines& context, int cullGroup, int flags)
{
if (m->submissions[cullGroup].empty())
return;
CMatrix3D worldToCam;
g_Renderer.GetViewCamera().m_Orientation.GetInverse(worldToCam);
/*
* Rendering approach:
*
* m->submissions contains the list of CModels to render.
*
* The data we need to render a model is:
* - CShaderTechnique
* - CTexture
* - CShaderUniforms
* - CModelDef (mesh data)
* - CModel (model instance data)
*
* For efficient rendering, we need to batch the draw calls to minimise state changes.
* (Uniform and texture changes are assumed to be cheaper than binding new mesh data,
* and shader changes are assumed to be most expensive.)
* First, group all models that share a technique to render them together.
* Within those groups, sub-group by CModelDef.
* Within those sub-groups, sub-sub-group by CTexture.
* Within those sub-sub-groups, sub-sub-sub-group by CShaderUniforms.
*
* Alpha-blended models have to be sorted by distance from camera,
* then we can batch as long as the order is preserved.
* Non-alpha-blended models can be arbitrarily reordered to maximise batching.
*
* For each model, the CShaderTechnique is derived from:
* - The current global 'context' defines
* - The CModel's material's defines
* - The CModel's material's shader effect name
*
* There are a smallish number of materials, and a smaller number of techniques.
*
* To minimise technique lookups, we first group models by material,
* in 'materialBuckets' (a hash table).
*
* For each material bucket we then look up the appropriate shader technique.
* If the technique requires sort-by-distance, the model is added to the
* 'sortByDistItems' list with its computed distance.
* Otherwise, the bucket's list of models is sorted by modeldef+texture+uniforms,
* then the technique and model list is added to 'techBuckets'.
*
* 'techBuckets' is then sorted by technique, to improve batching when multiple
* materials map onto the same technique.
*
* (Note that this isn't perfect batching: we don't sort across models in
* multiple buckets that share a technique. In practice that shouldn't reduce
* batching much (we rarely have one mesh used with multiple materials),
* and it saves on copying and lets us sort smaller lists.)
*
* Extra tech buckets are added for the sorted-by-distance models without reordering.
* Finally we render by looping over each tech bucket, then looping over the model
* list in each, rebinding the GL state whenever it changes.
*/
Allocators::DynamicArena arena(256 * KiB);
typedef ProxyAllocator<CModel*, Allocators::DynamicArena> ModelListAllocator;
typedef std::vector<CModel*, ModelListAllocator> ModelList_t;
typedef boost::unordered_map<SMRMaterialBucketKey, ModelList_t,
SMRMaterialBucketKeyHash, std::equal_to<SMRMaterialBucketKey>,
ProxyAllocator<std::pair<const SMRMaterialBucketKey, ModelList_t>, Allocators::DynamicArena>
> MaterialBuckets_t;
MaterialBuckets_t materialBuckets((MaterialBuckets_t::allocator_type(arena)));
{
PROFILE3("bucketing by material");
for (size_t i = 0; i < m->submissions[cullGroup].size(); ++i)
{
CModel* model = m->submissions[cullGroup][i];
uint32_t condFlags = 0;
const CShaderConditionalDefines& condefs = model->GetMaterial().GetConditionalDefines();
for (size_t j = 0; j < condefs.GetSize(); ++j)
{
const CShaderConditionalDefines::CondDefine& item = condefs.GetItem(j);
int type = item.m_CondType;
switch (type)
{
case DCOND_DISTANCE:
{
CVector3D modelpos = model->GetTransform().GetTranslation();
float dist = worldToCam.Transform(modelpos).Z;
float dmin = item.m_CondArgs[0];
float dmax = item.m_CondArgs[1];
if ((dmin < 0 || dist >= dmin) && (dmax < 0 || dist < dmax))
condFlags |= (1 << j);
break;
}
}
//.........这里部分代码省略.........