當前位置: 首頁>>代碼示例 >>用法及示例精選 >>正文


R broom tidy.speedglm 整理 a(n) speedglm 對象


Tidy 總結了有關模型組件的信息。模型組件可能是回歸中的單個項、單個假設、聚類或類。 tidy 所認為的模型組件的確切含義因模型而異,但通常是不言而喻的。如果模型具有多種不同類型的組件,您將需要指定要返回哪些組件。

用法

# S3 method for speedglm
tidy(x, conf.int = FALSE, conf.level = 0.95, exponentiate = FALSE, ...)

參數

x

speedglm::speedglm() 返回的 speedglm 對象。

conf.int

邏輯指示是否在整理的輸出中包含置信區間。默認為 FALSE

conf.level

用於置信區間的置信水平(如果 conf.int = TRUE )。必須嚴格大於 0 且小於 1。默認為 0.95,對應於 95% 的置信區間。

exponentiate

邏輯指示是否對係數估計值取冪。這對於邏輯回歸和多項回歸來說是典型的,但如果沒有 log 或 logit 鏈接,那麽這是一個壞主意。默認為 FALSE

...

附加參數。不曾用過。僅需要匹配通用簽名。注意:拚寫錯誤的參數將被吸收到 ... 中,並被忽略。如果拚寫錯誤的參數有默認值,則將使用默認值。例如,如果您傳遞 conf.lvel = 0.9 ,所有計算將使用 conf.level = 0.95 進行。這裏有兩個異常:

  • tidy() 方法在提供 exponentiate 參數時會發出警告(如果該參數將被忽略)。

  • augment() 方法在提供 newdata 參數時會發出警告(如果該參數將被忽略)。

也可以看看

帶有列的 tibble::tibble()

conf.high

估計置信區間的上限。

conf.low

估計置信區間的下限。

estimate

回歸項的估計值。

p.value

與觀察到的統計量相關的兩側 p 值。

statistic

在回歸項非零的假設中使用的 T-statistic 的值。

std.error

回歸項的標準誤差。

term

回歸項的名稱。

例子


# load libraries for models and data
library(speedglm)

# generate data
clotting <- data.frame(
  u = c(5, 10, 15, 20, 30, 40, 60, 80, 100),
  lot1 = c(118, 58, 42, 35, 27, 25, 21, 19, 18)
)

# fit model
fit <- speedglm(lot1 ~ log(u), data = clotting, family = Gamma(log))

# summarize model fit with tidiers
tidy(fit)
#> # A tibble: 2 × 5
#>   term        estimate std.error statistic      p.value
#>   <chr>          <dbl>     <dbl>     <dbl>        <dbl>
#> 1 (Intercept)    5.50     0.190       28.9 0.0000000152
#> 2 log(u)        -0.602    0.0553     -10.9 0.0000122   
glance(fit)
#> # A tibble: 1 × 8
#>   null.deviance df.null logLik   AIC   BIC deviance df.residual  nobs
#>           <dbl>   <int>  <dbl> <dbl> <dbl>    <dbl>       <int> <int>
#> 1          3.51       8  -26.2  58.5  59.1    0.163           7     9

相關用法


注:本文由純淨天空篩選整理自大神的英文原創作品 Tidy a(n) speedglm object。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。