當前位置: 首頁>>代碼示例 >>用法及示例精選 >>正文


R broom tidy.lmRob 整理 a(n) lmRob 對象


Tidy 總結了有關模型組件的信息。模型組件可能是回歸中的單個項、單個假設、聚類或類。 tidy 所認為的模型組件的確切含義因模型而異,但通常是不言而喻的。如果模型具有多種不同類型的組件,您將需要指定要返回哪些組件。

用法

# S3 method for lmRob
tidy(x, ...)

參數

x

robust::lmRob() 返回的 lmRob 對象。

...

附加參數。不曾用過。僅需要匹配通用簽名。注意:拚寫錯誤的參數將被吸收到 ... 中,並被忽略。如果拚寫錯誤的參數有默認值,則將使用默認值。例如,如果您傳遞 conf.lvel = 0.9 ,所有計算將使用 conf.level = 0.95 進行。這裏有兩個異常:

  • tidy() 方法在提供 exponentiate 參數時會發出警告(如果該參數將被忽略)。

  • augment() 方法在提供 newdata 參數時會發出警告(如果該參數將被忽略)。

細節

對於強大模型的整理器MASS包見tidy.rlm().

也可以看看

robust::lmRob()

其他強大的整理器:augment.lmRob()glance.glmRob()glance.lmRob()tidy.glmRob()

例子


# load modeling library
library(robust)

# fit model
m <- lmRob(mpg ~ wt, data = mtcars)

# summarize model fit with tidiers
tidy(m)
#> # A tibble: 2 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)    35.6       3.58      9.93 5.37e-11
#> 2 wt             -4.91      1.09     -4.49 9.67e- 5
augment(m)
#> # A tibble: 32 × 4
#>    .rownames           mpg    wt .fitted
#>    <chr>             <dbl> <dbl>   <dbl>
#>  1 Mazda RX4          21    2.62    22.7
#>  2 Mazda RX4 Wag      21    2.88    21.4
#>  3 Datsun 710         22.8  2.32    24.2
#>  4 Hornet 4 Drive     21.4  3.22    19.8
#>  5 Hornet Sportabout  18.7  3.44    18.7
#>  6 Valiant            18.1  3.46    18.6
#>  7 Duster 360         14.3  3.57    18.0
#>  8 Merc 240D          24.4  3.19    19.9
#>  9 Merc 230           22.8  3.15    20.1
#> 10 Merc 280           19.2  3.44    18.7
#> # ℹ 22 more rows
glance(m)
#> # A tibble: 1 × 5
#>   r.squared deviance sigma df.residual  nobs
#>       <dbl>    <dbl> <dbl>       <int> <int>
#> 1     0.567     136.  2.95          30    32

相關用法


注:本文由純淨天空篩選整理自大神的英文原創作品 Tidy a(n) lmRob object。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。