R語言
SSD
位於 stats
包(package)。 說明
用於計算殘差平方和和乘積的矩陣或多元線性模型的估計方差矩陣的函數。
用法
# S3 method for class 'mlm'
SSD(object, ...)
# S3 methods for class 'SSD' and 'mlm'
estVar(object, ...)
參數
object |
|
... |
Unused |
值
SSD()
返回包含以下組件的類 "SSD"
的列表
SSD |
殘差平方和和乘積矩陣 |
df |
自由度 |
call |
複製自 |
estVar
返回具有估計方差和協方差的矩陣。
例子
# Lifted from Baron+Li:
# "Notes on the use of R for psychology experiments and questionnaires"
# Maxwell and Delaney, p. 497
reacttime <- matrix(c(
420, 420, 480, 480, 600, 780,
420, 480, 480, 360, 480, 600,
480, 480, 540, 660, 780, 780,
420, 540, 540, 480, 780, 900,
540, 660, 540, 480, 660, 720,
360, 420, 360, 360, 480, 540,
480, 480, 600, 540, 720, 840,
480, 600, 660, 540, 720, 900,
540, 600, 540, 480, 720, 780,
480, 420, 540, 540, 660, 780),
ncol = 6, byrow = TRUE,
dimnames = list(subj = 1:10,
cond = c("deg0NA", "deg4NA", "deg8NA",
"deg0NP", "deg4NP", "deg8NP")))
mlmfit <- lm(reacttime ~ 1)
SSD(mlmfit)
estVar(mlmfit)
也可以看看
相關用法
- R SSbiexp 自啟動 NLS 雙指數模型
- R SSmicmen 自啟動 NLS Michaelis-Menten 模型
- R SSasymp 自啟動 NLS 漸近回歸模型
- R SSweibull 自啟動 NLS 威布爾增長曲線模型
- R SSlogis 自啟動 NLS 邏輯模型
- R SSgompertz 自啟動 NLS Gompertz 增長模型
- R SSfol 自啟動 NLS 一階室模型
- R SSfpl 自啟動NLS四參數Logistic模型
- R SSasympOrig 通過原點的自啟動 NLS 漸近回歸模型
- R SSasympOff 帶偏移量的自啟動 Nls 漸近回歸模型
- R StructTS 擬合結構時間序列
- R Smirnov 斯米爾諾夫統計量的分布
- R SignRank Wilcoxon 有符號秩統計量的分布
- R stlmethods STL 對象的方法
- R medpolish 矩陣的中值波蘭(穩健雙向分解)
- R naprint 調整缺失值
- R summary.nls 總結非線性最小二乘模型擬合
- R summary.manova 多元方差分析的匯總方法
- R formula 模型公式
- R nls.control 控製 nls 中的迭代
- R aggregate 計算數據子集的匯總統計
- R deriv 簡單表達式的符號和算法導數
- R kruskal.test Kruskal-Wallis 秩和檢驗
- R quade.test 四方測試
- R decompose 移動平均線的經典季節性分解
注:本文由純淨天空篩選整理自R-devel大神的英文原創作品 SSD Matrix and Estimated Variance Matrix in Multivariate Models。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。