R語言
SSlogis
位於 stats
包(package)。 說明
這selfStart
模型評估邏輯函數及其梯度。它有一個initial
創建參數初始估計的屬性Asym
,xmid
, 和scal
。在R3.4.2 及更早版本,該 init 函數在以下情況下失敗min(input)
正好為零。
用法
SSlogis(input, Asym, xmid, scal)
參數
input |
用於評估模型的數值向量。 |
Asym |
表示漸近線的數字參數。 |
xmid |
表示曲線拐點處的 |
scal |
|
值
與 input
長度相同的數值向量。它是表達式 Asym/(1+exp((xmid-input)/scal))
的值。如果所有參數 Asym
、 xmid
和 scal
都是對象的名稱,則相對於這些名稱的梯度矩陣將作為名為 gradient
的屬性附加。
例子
Chick.1 <- ChickWeight[ChickWeight$Chick == 1, ]
SSlogis(Chick.1$Time, 368, 14, 6) # response only
local({
Asym <- 368; xmid <- 14; scal <- 6
SSlogis(Chick.1$Time, Asym, xmid, scal) # response _and_ gradient
})
getInitial(weight ~ SSlogis(Time, Asym, xmid, scal), data = Chick.1)
## Initial values are in fact the converged one here, "Number of iter...: 0" :
fm1 <- nls(weight ~ SSlogis(Time, Asym, xmid, scal), data = Chick.1)
summary(fm1)
## but are slightly improved here:
fm2 <- update(fm1, control=nls.control(tol = 1e-9, warnOnly=TRUE), trace = TRUE)
all.equal(coef(fm1), coef(fm2)) # "Mean relative difference: 9.6e-6"
str(fm2$convInfo) # 3 iterations
dwlg1 <- data.frame(Prop = c(rep(0,5), 2, 5, rep(9, 9)), end = 1:16)
iPar <- getInitial(Prop ~ SSlogis(end, Asym, xmid, scal), data = dwlg1)
## failed in R <= 3.4.2 (because of the '0's in 'Prop')
stopifnot(all.equal(tolerance = 1e-6,
iPar, c(Asym = 9.0678, xmid = 6.79331, scal = 0.499934)))
## Visualize the SSlogis() model parametrization :
xx <- seq(-0.75, 5, by=1/32)
yy <- 5 / (1 + exp((2-xx)/0.6)) # == SSlogis(xx, *):
stopifnot( all.equal(yy, SSlogis(xx, Asym = 5, xmid = 2, scal = 0.6)) )
require(graphics)
op <- par(mar = c(0.5, 0, 3.5, 0))
plot(xx, yy, type = "l", axes = FALSE, ylim = c(0,6), xlim = c(-1, 5),
xlab = "", ylab = "", lwd = 2,
main = "Parameters in the SSlogis model")
mtext(quote(list(phi[1] == "Asym", phi[2] == "xmid", phi[3] == "scal")))
usr <- par("usr")
arrows(usr[1], 0, usr[2], 0, length = 0.1, angle = 25)
arrows(0, usr[3], 0, usr[4], length = 0.1, angle = 25)
text(usr[2] - 0.2, 0.1, "x", adj = c(1, 0))
text( -0.1, usr[4], "y", adj = c(1, 1))
abline(h = 5, lty = 3)
arrows(-0.8, c(2.1, 2.9),
-0.8, c(0, 5 ), length = 0.1, angle = 25)
text (-0.8, 2.5, quote(phi[1]))
segments(c(2,2.6,2.6), c(0, 2.5,3.5), # NB. SSlogis(x = xmid = 2) = 2.5
c(2,2.6,2 ), c(2.5,3.5,2.5), lty = 2, lwd = 0.75)
text(2, -.1, quote(phi[2]))
arrows(c(2.2, 2.4), 2.5,
c(2.0, 2.6), 2.5, length = 0.08, angle = 25)
text( 2.3, 2.5, quote(phi[3])); text(2.7, 3, "1")
par(op)
作者
José Pinheiro and Douglas Bates
也可以看看
相關用法
- R SSD 多元模型中的 SSD 矩陣和估計方差矩陣
- R SSbiexp 自啟動 NLS 雙指數模型
- R SSmicmen 自啟動 NLS Michaelis-Menten 模型
- R SSasymp 自啟動 NLS 漸近回歸模型
- R SSweibull 自啟動 NLS 威布爾增長曲線模型
- R SSgompertz 自啟動 NLS Gompertz 增長模型
- R SSfol 自啟動 NLS 一階室模型
- R SSfpl 自啟動NLS四參數Logistic模型
- R SSasympOrig 通過原點的自啟動 NLS 漸近回歸模型
- R SSasympOff 帶偏移量的自啟動 Nls 漸近回歸模型
- R StructTS 擬合結構時間序列
- R Smirnov 斯米爾諾夫統計量的分布
- R SignRank Wilcoxon 有符號秩統計量的分布
- R stlmethods STL 對象的方法
- R medpolish 矩陣的中值波蘭(穩健雙向分解)
- R naprint 調整缺失值
- R summary.nls 總結非線性最小二乘模型擬合
- R summary.manova 多元方差分析的匯總方法
- R formula 模型公式
- R nls.control 控製 nls 中的迭代
- R aggregate 計算數據子集的匯總統計
- R deriv 簡單表達式的符號和算法導數
- R kruskal.test Kruskal-Wallis 秩和檢驗
- R quade.test 四方測試
- R decompose 移動平均線的經典季節性分解
注:本文由純淨天空篩選整理自R-devel大神的英文原創作品 Self-Starting Nls Logistic Model。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。