當前位置: 首頁>>代碼示例>>Python>>正文


Python NervanaGPU.sum方法代碼示例

本文整理匯總了Python中nervanagpu.NervanaGPU.sum方法的典型用法代碼示例。如果您正苦於以下問題:Python NervanaGPU.sum方法的具體用法?Python NervanaGPU.sum怎麽用?Python NervanaGPU.sum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nervanagpu.NervanaGPU的用法示例。


在下文中一共展示了NervanaGPU.sum方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: GPU

# 需要導入模塊: from nervanagpu import NervanaGPU [as 別名]
# 或者: from nervanagpu.NervanaGPU import sum [as 別名]

#.........這裏部分代碼省略.........
            raise AttributeError("unexpected pooling op type: %s", op)

    def logistic(self, x, out):
        """
        Logistic sigmoid nonlinearity, 1/(1+exp(-x))

        Arguments:
            x (GPUTensor): Input tensor
            out (GPUTensor): Output tensor

        """
        self.ng.sig(x, out=out)

        return out

    def rectlin(self, x, out):
        """
        Rectified Linear nonlinearity

        Arguments:
            x (GPUTensor): Input tensor
            out (GPUTensor): Output tensor

        """
        self.ng.maximum(x, 0., out=out)
        return out

    def rectleaky(self, x, slope, out):
        out[:] = self.ng.maximum(x, x*slope)

    def rectleaky_derivative(self, x, slope, out):
        out[:] = self.ng.greater(x, 0) * (1.0 - slope) + slope

    def sum(self, tsr, axes, out):
        """
        Sum

        Arguments:
            tsr  (GPUTensor): Input tensor
            axes (int): Axis along which the reduction is performed. If axes
                        is None,  the tensor is flattened and reduced over
                        both dimensions.
            out (GPUTensor): Output tensor
        """
        if axes is None:
            sze = tsr.shape[0]*tsr.shape[1]
            self.ng.sum(tsr.reshape(sze, 1), axis=0, out=out)
        else:
            self.ng.sum(tsr, axis=axes, out=out)
        return out

    def mean(self, tsr, axes, out):
        """
        Calculates the arithmetic mean of the elements along the specified
        axes.

        Arguments:
            tsr (GPUTensor): Input tensor
            axes (int): Axis along which the reduction is performed. If axes
                        is None,  the tensor is flattened and reduced over
                        both dimensions.
            out (GPUTensor): Output tensor
        """
        if axes is None:
            sze = tsr.shape[0]*tsr.shape[1]
            self.ng.mean(tsr.reshape(sze, 1), axis=0, out=out)
開發者ID:YouVentures,項目名稱:neon,代碼行數:70,代碼來源:gpu.py

示例2: MGPU

# 需要導入模塊: from nervanagpu import NervanaGPU [as 別名]
# 或者: from nervanagpu.NervanaGPU import sum [as 別名]

#.........這裏部分代碼省略.........
                          persist_values=True):
        # TODO: set ptype to be fragment in this case ??
        return self.empty((shape[0], shape[1] / self.num_dev), dtype,
                          persist_values=persist_values)

    def zeros_like(self, ary, dtype=default_dtype, persist_values=True,
                   name=None):
        result = self.zeros(ary.shape, dtype=dtype,
                            persist_values=persist_values)
        result.ptype = ary.ptype
        return result

    def empty_like(self, ary, dtype=default_dtype, persist_values=True,
                   name=None):
        result = self.empty(ary.shape, dtype=dtype,
                            persist_values=persist_values, name=name)
        result.ptype = ary.ptype
        return result

    def set(self, tensor, data):
        assert isinstance(tensor, MGPUTensor)
        if tensor.ptype == 'replica':
            for dest, strm, ctx in zip(tensor.tlist, self.strms, self.ctxs):
                ctx.push()
                drv.memcpy_htod_async(dest.ptr, data, strm)
                ctx.pop()
            # tensor.copy_from(data)
        else:
            self.scatter(data, tensor)

    def scatter(self, hbuf, dbuf):
        '''
        scatters the array data in hbuf to the mgpu tensor
        assumes that dbuf is a M x N and hbuf is M x (Nxk) where k is the
        number of replicas
        also assumes that dtype of hbuf and dbuf are the same
        '''
        assert hbuf.size == dbuf.size * dbuf.num_dev
        assert isinstance(dbuf, MGPUTensor)
        assert hbuf.dtype == dbuf.dtype
        ndata = dbuf.size
        starts = [i * ndata for i in range(self.num_dev)]

        for dest, strm, ctx, doff in zip(dbuf.tlist, self.strms, self.ctxs,
                                         starts):
            src = hbuf.reshape((hbuf.size))[doff:(doff + ndata)]
            ctx.push()
            drv.memcpy_htod_async(dest.ptr, src, strm)
            ctx.pop()

        self.synchronize()

    def fprop_fc(self, out, inputs, weights, layer=None):
        """
        In this case, the weights are shards, the acts are replicas
        ubuf should be of size nout/num_dev x mbsz
        """
        ubuf = layer.mempool[0]
        assert ubuf.shape == (weights.shape[0], inputs.shape[1])

        if layer.use_biases:
            biases = layer.biases.tlist
        else:
            biases = [None for i in range(self.num_dev)]

        for dbuf, ibuf, wt, bs, strm, ctx in zip(ubuf.tlist, inputs.tlist,
開發者ID:neuroidss,項目名稱:neon,代碼行數:70,代碼來源:mgpu.py


注:本文中的nervanagpu.NervanaGPU.sum方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。