當前位置: 首頁>>代碼示例>>Python>>正文


Python NervanaGPU.reciprocal方法代碼示例

本文整理匯總了Python中nervanagpu.NervanaGPU.reciprocal方法的典型用法代碼示例。如果您正苦於以下問題:Python NervanaGPU.reciprocal方法的具體用法?Python NervanaGPU.reciprocal怎麽用?Python NervanaGPU.reciprocal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nervanagpu.NervanaGPU的用法示例。


在下文中一共展示了NervanaGPU.reciprocal方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: GPU

# 需要導入模塊: from nervanagpu import NervanaGPU [as 別名]
# 或者: from nervanagpu.NervanaGPU import reciprocal [as 別名]

#.........這裏部分代碼省略.........
        return out

    def argmax(self, a, out, axis=0):
        """
        Calculates the indices of the maximal element value along the specified
        axis.  If multiple elements contain the maximum, only the elements of
        the first are returned.

        Arguments:
            tsr (GPUTensor): The GPUTensor on which to find the maximum indices
            axis (int): The dimension along which to find the maximum.  If set
                        to None, find the overall maximum index of a flattened
                        representation of tsr.
            out (GPUTensor): Where to store the result.  Should be of the
                             appropriate type and expected shape

        Returns:
            GPUTensor: reference to out
        """
        self.ng.argmax(a, out=out, axis=axis)
        return out

    def softmax(self, x, out):
        """
        Softmax nonlinearity. Computes exp(x-max(x)) / sum_i exp(x_i-max(x_i))

        Arguments:
            x (GPUTensor): input tensor.
            out (GPUTensor): where the result will be stored.

        Returns:
            GPUTensor: reference to out
        """
        out[:] = (self.ng.reciprocal(self.ng.sum(
                  self.ng.exp(x - self.ng.max(x, axis=0)), axis=0)) *
                  self.ng.exp(x - self.ng.max(x, axis=0)))
        return out

    def softmax_gradient(self, y, err, out):
        """
        Gradient of the softmax nonlinearity.

        Arguments:
            y (GPUTensor): input tensor.
            err (GPUTensor): backpropagated error.
            out (GPUTensor): where the result will be stored.

        Returns:
            GPUTensor: reference to out
        """
        raise NotImplementedError("Softmax gradient should use shortcut")
        return out

    def make_binary_mask(self, tsr, keepthresh=0.5, dtype=default_dtype):
        """
        Create a binary mask for dropout layers.

        Arguments:
            tsr (GPUTensor): Output tensor
            keepthresh (float): fraction of ones
        """
        self.ng.dropout(keep=keepthresh, out=tsr)

    def gdm_compound(self, ps_item, us_item, vs_item, momentum_coef,
                     learning_rate, epoch):
        """
開發者ID:YouVentures,項目名稱:neon,代碼行數:70,代碼來源:gpu.py


注:本文中的nervanagpu.NervanaGPU.reciprocal方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。