當前位置: 首頁>>代碼示例>>Python>>正文


Python NervanaGPU.rand方法代碼示例

本文整理匯總了Python中nervanagpu.NervanaGPU.rand方法的典型用法代碼示例。如果您正苦於以下問題:Python NervanaGPU.rand方法的具體用法?Python NervanaGPU.rand怎麽用?Python NervanaGPU.rand使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nervanagpu.NervanaGPU的用法示例。


在下文中一共展示了NervanaGPU.rand方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: in

# 需要導入模塊: from nervanagpu import NervanaGPU [as 別名]
# 或者: from nervanagpu.NervanaGPU import rand [as 別名]
for K, C, N in ((3072,3072,32),):

    total  = 0

    for op,  dimA,  dimB,  dimC in (
      ("nn", (K,C), (C,N), (K,N) ),   # fprop
      ("tn", (K,C), (K,N), (C,N) ),   # bprop
      ("nt", (K,N), (C,N), (K,C) ),): # update

        devA = ng.empty(dimA, dtype=np.float32)
        devB = ng.empty(dimB, dtype=np.float32)
        devC = ng.empty(dimC, dtype=np.float32)

        # fill with uniform randoms from -1 to 1
        devA[:] = 2 * (.5 - ng.rand())
        devB[:] = 2 * (.5 - ng.rand())

        total += cublas_dot(op, devA, devB, devC, repeat=repeat, warmup=True)

    print "N2 Total: ", total
    total = 0

    for op,  dimA,  dimB,  dimC in (
      ("nt", (N,C), (K,C), (N,K) ),   # fprop
      ("nn", (N,K), (K,C), (N,C) ),   # bprop
      ("tn", (N,K), (N,C), (K,C) ),): # update

        devA = ng.empty(dimA, dtype=np.float32)
        devB = ng.empty(dimB, dtype=np.float32)
        devC = ng.empty(dimC, dtype=np.float32)
開發者ID:KayneWest,項目名稱:nervanagpu,代碼行數:32,代碼來源:minibatch_layout_diff.py

示例2: in

# 需要導入模塊: from nervanagpu import NervanaGPU [as 別名]
# 或者: from nervanagpu.NervanaGPU import rand [as 別名]
                    #(3072,3072,32+128*1),(3072,3072,64+128*1),(3072,3072,96+128*1),(3072,3072,128+128*1),
                    #(3072,3072,32+128*2),(3072,3072,64+128*2),(3072,3072,96+128*2),(3072,3072,128+128*2),
                    #(3072,3072,32+128*3),(3072,3072,64+128*3),(3072,3072,96+128*3),(3072,3072,128+128*3),): 
        for op,  dimA,  dimB,  dimC in (
          ("nn", (K,C), (C,N), (K,N) ),  # fprop
          ("tn", (K,C), (K,N), (C,N) ),  # bprop
          ("nt", (K,N), (C,N), (K,C) )): # update

            repeat = 5000 if C <= 3072 else 500

            devA1 = ng.empty(dimA, dtype=dtype)
            devB1 = ng.empty(dimB, dtype=dtype)
            devC1 = ng.empty(dimC, dtype=dtype)

            # fill with uniform randoms from -1 to 1
            devA1[:] = 2 * (.5 - ng.rand())
            devB1[:] = 2 * (.5 - ng.rand())

            # just alias if same dtype
            if dtype is np.float32:
                devA2 = devA1
                devB2 = devB1
            # otherwise copy
            else:
                devA2 = ng.empty(dimA, dtype=np.float32)
                devB2 = ng.empty(dimB, dtype=np.float32)
                devA2[:] = devA1
                devB2[:] = devB1

            devC2 = ng.empty(dimC, dtype=np.float32)
開發者ID:KayneWest,項目名稱:nervanagpu,代碼行數:32,代碼來源:cublas2.py

示例3:

# 需要導入模塊: from nervanagpu import NervanaGPU [as 別名]
# 或者: from nervanagpu.NervanaGPU import rand [as 別名]
    str_d, str_h, str_w = conv.strides
    alpha, beta = (1.0, 0.0)

    dimI = conv.dimI2
    dimF = conv.dimF2
    dimO = conv.dimO2

    print "cudnn:"

    cuI = ng.empty(dimI[::-1], dtype=np.float32)
    cuF = ng.empty(dimF[::-1], dtype=np.float32)
    cuE = ng.empty(dimO[::-1], dtype=np.float32)
    cuB = ng.empty(dimI[::-1], dtype=np.float32)
    cuU = ng.empty(dimF[::-1], dtype=np.float32)
    cuO = ng.empty(dimO[::-1], dtype=np.float32)
    cuI[:] = 2 * (.5 - ng.rand())
    cuF[:] = 2 * (.5 - ng.rand())
    cuE[:] = 2 * (.5 - ng.rand())

    #print drv.mem_get_info()

    I_data = ctypes.c_void_p(int(cuI.gpudata))
    F_data = ctypes.c_void_p(int(cuF.gpudata))
    O_data = ctypes.c_void_p(int(cuO.gpudata))
    E_data = ctypes.c_void_p(int(cuE.gpudata))
    B_data = ctypes.c_void_p(int(cuB.gpudata))
    U_data = ctypes.c_void_p(int(cuU.gpudata))


    libcudnn.cudnnSetConvolution2dDescriptor(C_desc, pad_h, pad_w, str_h, str_w, 1, 1, conv_mode)
    libcudnn.cudnnSetTensor4dDescriptor(I_desc, NCHW_fmt, cu_dtype, N, C, H, W)
開發者ID:KayneWest,項目名稱:nervanagpu,代碼行數:33,代碼來源:cudnn.py


注:本文中的nervanagpu.NervanaGPU.rand方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。