當前位置: 首頁>>代碼示例>>Python>>正文


Python NervanaGPU.conv_layer方法代碼示例

本文整理匯總了Python中nervanagpu.NervanaGPU.conv_layer方法的典型用法代碼示例。如果您正苦於以下問題:Python NervanaGPU.conv_layer方法的具體用法?Python NervanaGPU.conv_layer怎麽用?Python NervanaGPU.conv_layer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nervanagpu.NervanaGPU的用法示例。


在下文中一共展示了NervanaGPU.conv_layer方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: run

# 需要導入模塊: from nervanagpu import NervanaGPU [as 別名]
# 或者: from nervanagpu.NervanaGPU import conv_layer [as 別名]
def run():
    ng = NervanaGPU(stochastic_round=False)

    dt = np.float32
    # N: Number of images in mini-batch
    # C: Number of input feature maps
    # K: Number of output feature maps

    # D: Depth  of input image
    # H: Height of input image
    # W: Width  of input image

    # T: Depth  of filter kernel
    # R: Height of filter kernel
    # S: Width  of filter kernel
    # 
    # * images:      (numColors, imgSizeY, imgSizeX, numImages) with stride given
    # * filters:     (numColors, filterPixels, numFilters) if conv
    # *              (numModules, numColors, filterPixels, numFilters) otherwise
    # *
    # * targets:     (numFilters, numModulesY, numModulesX, numImages)

    N = 128
    C = 3
    K = 64

    D = 1
    H = 64
    W = 64

    T = 1
    R = 8
    S = 8

    pad_h = pad_w = 0
    str_h = str_w = 4

    layer = ng.conv_layer(dt, N, C, K,
            D=D, H=H, W=W,
            T=T, R=R, S=S,
            pad_d=0, pad_h=pad_h, pad_w=pad_w,
            str_d=1, str_h=str_h, str_w=str_w,
            grid_P=0, grid_Q=0, update_size=None)

    numImages = N 
    numFilters = K

    numModulesY = int(math.ceil(float(H - R + 1 + 2*pad_h) / str_h))
    numModulesX = int(math.ceil(float(W - S + 1 + 2*pad_w) / str_w))

    print "Num Modules ", numModulesX, numModulesY


    # Set up images, filters, and outputs
    # imgd = np.loadtxt("im1.txt")
    # img = np.zeros((64, 64, 3))
    # print imgd.shape
    # for i in range(3):
    #     img[:, :, i] = imgd[i*64:(i+1)*64, :]
    # hostImages = np.tile(img)

    hostImages = np.random.rand(C, H, W, N)
    hostFilters = np.random.uniform(low=0.0, high=1.0, size=(C, S*R, numFilters)) #np.ones((C, S*R, numFilters)) #
    hostOutputs = np.zeros((numFilters, numModulesY, numModulesX, N))

    print "Input sum", np.sum(hostImages)

    # Run cc2 kernel    
    devI = ng.array(hostImages, dtype=dt)
    devF = ng.array(hostFilters, dtype=dt)
    devO = ng.array(hostOutputs, dtype=dt)

    ng.fprop_cuda_conv(layer, devI, devF, devO)

    print "CC2 input sum: ", np.sum(devI.asnumpyarray())
    print "CC2 output sum: ", np.sum(devO.asnumpyarray())

    # Run maxwel kernel
    # images: (C * H * W, N)
    # filters:  (C * S * R , numFilters)
    # outputs:  (numFilters * numModulesX * numModulesY, N)
    devI = ng.array(hostImages.reshape((C*H*W, N)), dtype=dt)
    devF = ng.array(hostFilters.reshape((C*S*R, numFilters)), dtype=dt)
    devO2 = ng.array(hostOutputs.reshape(numFilters*numModulesX*numModulesY, N), dtype=dt)

    ng.fprop_conv(layer, devI, devF, devO2)
    print "NG input sum: ", np.sum(devI.asnumpyarray())
    print "NG output sum: ", np.sum(devO2.asnumpyarray())

    hostOutputs1 = np.reshape(devO.asnumpyarray(), devO2.shape)
    hostOutputs2 = devO2.asnumpyarray()

    for i in xrange(hostOutputs1.shape[0]):
       for j in xrange(hostOutputs1.shape[1]):
           assert(abs(hostOutputs1[i, j] - hostOutputs2[i, j]) < 1e-4)
開發者ID:jcoreyes,項目名稱:nervanagpu,代碼行數:97,代碼來源:testcudaconv.py

示例2:

# 需要導入模塊: from nervanagpu import NervanaGPU [as 別名]
# 或者: from nervanagpu.NervanaGPU import conv_layer [as 別名]
                ( 64, 64, 64, 1, 224,224, 1, 3, 3, 0,1,1, 1,1,1),
                ( 64, 64,128, 1, 112,112, 1, 3, 3, 0,1,1, 1,1,1),
                ( 64,128,128, 1, 112,112, 1, 3, 3, 0,1,1, 1,1,1),
                ( 64,128,256, 1,  56, 56, 1, 3, 3, 0,1,1, 1,1,1),
                ( 64,256,256, 1,  56, 56, 1, 3, 3, 0,1,1, 1,1,1),
                ( 64,256,512, 1,  28, 28, 1, 3, 3, 0,1,1, 1,1,1),
                ( 64,512,512, 1,  28, 28, 1, 3, 3, 0,1,1, 1,1,1),
                ( 64,512,512, 1,  14, 14, 1, 3, 3, 0,1,1, 1,1,1),

                (128,  3, 64, 1, 224,224, 1,11,11, 0,3,3, 1,4,4),  #Alexnet
                (128, 64,192, 1,  27, 27, 1, 5, 5, 0,2,2, 1,1,1),
                (128,192,384, 1,  13, 13, 1, 3, 3, 0,1,1, 1,1,1),
                (128,384,256, 1,  13, 13, 1, 3, 3, 0,1,1, 1,1,1),
                (128,256,256, 1,  13, 13, 1, 3, 3, 0,1,1, 1,1,1),):

    conv = ng.conv_layer(dtype, *dims)

    N,C,K = conv.NCK
    D,H,W = conv.DHW
    T,R,S = conv.TRS
    M,P,Q = conv.MPQ
    pad_d, pad_h, pad_w = conv.padding
    str_d, str_h, str_w = conv.strides
    alpha, beta = (1.0, 0.0)

    dimI = conv.dimI2
    dimF = conv.dimF2
    dimO = conv.dimO2

    print "cudnn:"
開發者ID:KayneWest,項目名稱:nervanagpu,代碼行數:32,代碼來源:cudnn.py

示例3: set

# 需要導入模塊: from nervanagpu import NervanaGPU [as 別名]
# 或者: from nervanagpu.NervanaGPU import conv_layer [as 別名]
print context.get_device().name()

np.set_printoptions(threshold=8193, linewidth=600, formatter={'int':lambda x: "%10d" % x,'float':lambda x: "% .0f" % x})

ops  = set(("update",)) # "fprop","bprop","update"
ones = 0
cpu  = 0  # Set CPU to 1 to check against CPU
repeat = 1
dtype = np.float32

ng = NervanaGPU(stochastic_round=False, bench=True)

conv = ng.conv_layer(
    dtype,
    16,3,8,    # N,C,K
    1,64,64,   # D,H,W
    1,3,3,     # T,R,S
    0,1,1,     # padding
    1,1,1)     # strides


dimI = conv.dimI
dimF = conv.dimF
dimO = conv.dimO

# colapse outer dimensions into one and preserve inner dimension
# this allows for easy cpu convolution in numpy
def slicable(dim, pad=0):
    dim0 = reduce(mul, dim[:-1], 1) + pad
    return (dim0, dim[-1])
開發者ID:KayneWest,項目名稱:nervanagpu,代碼行數:32,代碼來源:conv_test.py


注:本文中的nervanagpu.NervanaGPU.conv_layer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。