本文整理匯總了Python中nervanagpu.NervanaGPU.conv_layer方法的典型用法代碼示例。如果您正苦於以下問題:Python NervanaGPU.conv_layer方法的具體用法?Python NervanaGPU.conv_layer怎麽用?Python NervanaGPU.conv_layer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類nervanagpu.NervanaGPU
的用法示例。
在下文中一共展示了NervanaGPU.conv_layer方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: run
# 需要導入模塊: from nervanagpu import NervanaGPU [as 別名]
# 或者: from nervanagpu.NervanaGPU import conv_layer [as 別名]
def run():
ng = NervanaGPU(stochastic_round=False)
dt = np.float32
# N: Number of images in mini-batch
# C: Number of input feature maps
# K: Number of output feature maps
# D: Depth of input image
# H: Height of input image
# W: Width of input image
# T: Depth of filter kernel
# R: Height of filter kernel
# S: Width of filter kernel
#
# * images: (numColors, imgSizeY, imgSizeX, numImages) with stride given
# * filters: (numColors, filterPixels, numFilters) if conv
# * (numModules, numColors, filterPixels, numFilters) otherwise
# *
# * targets: (numFilters, numModulesY, numModulesX, numImages)
N = 128
C = 3
K = 64
D = 1
H = 64
W = 64
T = 1
R = 8
S = 8
pad_h = pad_w = 0
str_h = str_w = 4
layer = ng.conv_layer(dt, N, C, K,
D=D, H=H, W=W,
T=T, R=R, S=S,
pad_d=0, pad_h=pad_h, pad_w=pad_w,
str_d=1, str_h=str_h, str_w=str_w,
grid_P=0, grid_Q=0, update_size=None)
numImages = N
numFilters = K
numModulesY = int(math.ceil(float(H - R + 1 + 2*pad_h) / str_h))
numModulesX = int(math.ceil(float(W - S + 1 + 2*pad_w) / str_w))
print "Num Modules ", numModulesX, numModulesY
# Set up images, filters, and outputs
# imgd = np.loadtxt("im1.txt")
# img = np.zeros((64, 64, 3))
# print imgd.shape
# for i in range(3):
# img[:, :, i] = imgd[i*64:(i+1)*64, :]
# hostImages = np.tile(img)
hostImages = np.random.rand(C, H, W, N)
hostFilters = np.random.uniform(low=0.0, high=1.0, size=(C, S*R, numFilters)) #np.ones((C, S*R, numFilters)) #
hostOutputs = np.zeros((numFilters, numModulesY, numModulesX, N))
print "Input sum", np.sum(hostImages)
# Run cc2 kernel
devI = ng.array(hostImages, dtype=dt)
devF = ng.array(hostFilters, dtype=dt)
devO = ng.array(hostOutputs, dtype=dt)
ng.fprop_cuda_conv(layer, devI, devF, devO)
print "CC2 input sum: ", np.sum(devI.asnumpyarray())
print "CC2 output sum: ", np.sum(devO.asnumpyarray())
# Run maxwel kernel
# images: (C * H * W, N)
# filters: (C * S * R , numFilters)
# outputs: (numFilters * numModulesX * numModulesY, N)
devI = ng.array(hostImages.reshape((C*H*W, N)), dtype=dt)
devF = ng.array(hostFilters.reshape((C*S*R, numFilters)), dtype=dt)
devO2 = ng.array(hostOutputs.reshape(numFilters*numModulesX*numModulesY, N), dtype=dt)
ng.fprop_conv(layer, devI, devF, devO2)
print "NG input sum: ", np.sum(devI.asnumpyarray())
print "NG output sum: ", np.sum(devO2.asnumpyarray())
hostOutputs1 = np.reshape(devO.asnumpyarray(), devO2.shape)
hostOutputs2 = devO2.asnumpyarray()
for i in xrange(hostOutputs1.shape[0]):
for j in xrange(hostOutputs1.shape[1]):
assert(abs(hostOutputs1[i, j] - hostOutputs2[i, j]) < 1e-4)
示例2:
# 需要導入模塊: from nervanagpu import NervanaGPU [as 別名]
# 或者: from nervanagpu.NervanaGPU import conv_layer [as 別名]
( 64, 64, 64, 1, 224,224, 1, 3, 3, 0,1,1, 1,1,1),
( 64, 64,128, 1, 112,112, 1, 3, 3, 0,1,1, 1,1,1),
( 64,128,128, 1, 112,112, 1, 3, 3, 0,1,1, 1,1,1),
( 64,128,256, 1, 56, 56, 1, 3, 3, 0,1,1, 1,1,1),
( 64,256,256, 1, 56, 56, 1, 3, 3, 0,1,1, 1,1,1),
( 64,256,512, 1, 28, 28, 1, 3, 3, 0,1,1, 1,1,1),
( 64,512,512, 1, 28, 28, 1, 3, 3, 0,1,1, 1,1,1),
( 64,512,512, 1, 14, 14, 1, 3, 3, 0,1,1, 1,1,1),
(128, 3, 64, 1, 224,224, 1,11,11, 0,3,3, 1,4,4), #Alexnet
(128, 64,192, 1, 27, 27, 1, 5, 5, 0,2,2, 1,1,1),
(128,192,384, 1, 13, 13, 1, 3, 3, 0,1,1, 1,1,1),
(128,384,256, 1, 13, 13, 1, 3, 3, 0,1,1, 1,1,1),
(128,256,256, 1, 13, 13, 1, 3, 3, 0,1,1, 1,1,1),):
conv = ng.conv_layer(dtype, *dims)
N,C,K = conv.NCK
D,H,W = conv.DHW
T,R,S = conv.TRS
M,P,Q = conv.MPQ
pad_d, pad_h, pad_w = conv.padding
str_d, str_h, str_w = conv.strides
alpha, beta = (1.0, 0.0)
dimI = conv.dimI2
dimF = conv.dimF2
dimO = conv.dimO2
print "cudnn:"
示例3: set
# 需要導入模塊: from nervanagpu import NervanaGPU [as 別名]
# 或者: from nervanagpu.NervanaGPU import conv_layer [as 別名]
print context.get_device().name()
np.set_printoptions(threshold=8193, linewidth=600, formatter={'int':lambda x: "%10d" % x,'float':lambda x: "% .0f" % x})
ops = set(("update",)) # "fprop","bprop","update"
ones = 0
cpu = 0 # Set CPU to 1 to check against CPU
repeat = 1
dtype = np.float32
ng = NervanaGPU(stochastic_round=False, bench=True)
conv = ng.conv_layer(
dtype,
16,3,8, # N,C,K
1,64,64, # D,H,W
1,3,3, # T,R,S
0,1,1, # padding
1,1,1) # strides
dimI = conv.dimI
dimF = conv.dimF
dimO = conv.dimO
# colapse outer dimensions into one and preserve inner dimension
# this allows for easy cpu convolution in numpy
def slicable(dim, pad=0):
dim0 = reduce(mul, dim[:-1], 1) + pad
return (dim0, dim[-1])