本文整理匯總了Python中nervanagpu.NervanaGPU.power方法的典型用法代碼示例。如果您正苦於以下問題:Python NervanaGPU.power方法的具體用法?Python NervanaGPU.power怎麽用?Python NervanaGPU.power使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類nervanagpu.NervanaGPU
的用法示例。
在下文中一共展示了NervanaGPU.power方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: GPU
# 需要導入模塊: from nervanagpu import NervanaGPU [as 別名]
# 或者: from nervanagpu.NervanaGPU import power [as 別名]
#.........這裏部分代碼省略.........
order (int): The order or p upon which the norm is calculated.
Valid values include:
None, inf, -inf, 0, 1, -1, 2, -2, ...
axis (int): The axis along which to compute vector norms.
out (GPUTensor): where to write the results to. Must be
of the expected result shape.
Returns:
GPUTensor: p-norm of tsr along the specified axis.
Raises:
IndexError if invalid axis specified
AttributeError if invalid order specified
See Also:
`numpy.linalg.norm`
"""
if not isinstance(axis, int) or axis < 0 or axis >= len(tsr.shape):
raise IndexError("invalid axis value: %s", axis)
if not isinstance(order, (int, float)):
raise AttributeError("invalid order value: %s", order)
if out is None:
raise AttributeError("No output tensor speficied", order)
if order == float('Inf'):
self.ng.max(self.fabs(tsr), axis, out)
elif order == float('-Inf'):
self.ng.min(self.fabs(tsr), axis, out)
elif order == 0:
tmp = self.zeros(tsr.shape)
self.ng.not_equal(tsr, tmp, tmp)
self.ng.sum(tmp, axis, out)
else:
tmp = self.empty(tsr.shape)
self.ng.power(self.fabs(tsr), order, tmp)
self.ng.sum(tmp, axis, out)
self.ng.power(out, (1.0 / order), out)
return out
def mean(self, tsr, axes, out):
"""
Calculates the arithmetic mean of the elements along the specified
axes.
Arguments:
tsr (GPUTensor): Input tensor
axes (int): Axis along which the reduction is performed. If axes
is None, the tensor is flattened and reduced over
both dimensions.
out (GPUTensor): Output tensor
"""
if axes is None:
sze = tsr.shape[0]*tsr.shape[1]
self.ng.mean(tsr.reshape(sze, 1), axis=0, out=out)
else:
self.ng.mean(tsr, axis=axes, out=out)
return out
def min(self, tsr, axes, out):
"""
Calculates the minimum of the elements along the specified
axes.
Arguments:
tsr (GPUTensor): Input tensor
axes (int): Axis along which the reduction is performed. If axes
is None, the tensor is flattened and reduced over