本文整理匯總了Python中nervanagpu.NervanaGPU.sqrt方法的典型用法代碼示例。如果您正苦於以下問題:Python NervanaGPU.sqrt方法的具體用法?Python NervanaGPU.sqrt怎麽用?Python NervanaGPU.sqrt使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類nervanagpu.NervanaGPU
的用法示例。
在下文中一共展示了NervanaGPU.sqrt方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: GPU
# 需要導入模塊: from nervanagpu import NervanaGPU [as 別名]
# 或者: from nervanagpu.NervanaGPU import sqrt [as 別名]
#.........這裏部分代碼省略.........
axes.
Arguments:
tsr (GPUTensor): the tensor on which to compute the variance
axes (int, list, optional): the dimension(s) along which to
variance. If set to None, we will
variance over all dimensions.
out (GPUTensor): where the result will be stored.
mean (GPUTensor): the tensor containing mean of tsr
Returns:
GPUTensor: reference to out
"""
if mean is None:
logger.error("GPUTensor requires mean to be specified.")
raise ValueError("mean not specified")
self.ng.mean(self.ng.square(tsr-mean), axis=axes, out=out)
return out
def fabs(self, x, out):
"""
Calculates absolute value of the elements in a tensor
Arguments:
x (GPUTensor): Input tensor
out (GPUTensor): Output tensor
Returns:
GPUTensor: reference to out
"""
self.ng.fabs(x, out=out)
return out
def sqrt(self, x, out):
"""
Calculates square root of the elements in a tensor
Arguments:
x (GPUTensor): Input tensor
out (GPUTensor): Output tensor
Returns:
GPUTensor: reference to out
"""
self.ng.sqrt(x, out=out)
return out
def zeros(self, shape, dtype=default_dtype, persist_values=True):
"""
Allocate a new GPUTensor and fill it with zeros.
Arguments:
shape (tupel): Shape of the desired GPUTensor
dtype (dtype): Optional datatype
persist_values (bool, optional): If set to True (the default), the
values assigned to this Tensor
will persist across multiple begin
and end calls. Setting to False
may provide a performance increase
if values do not need to be
maintained across such calls
Returns:
GPUTensor: output
"""
return self.ng.zeros(shape, dtype=dtype)