當前位置: 首頁>>代碼示例>>Python>>正文


Python NervanaGPU.fprop_pool方法代碼示例

本文整理匯總了Python中nervanagpu.NervanaGPU.fprop_pool方法的典型用法代碼示例。如果您正苦於以下問題:Python NervanaGPU.fprop_pool方法的具體用法?Python NervanaGPU.fprop_pool怎麽用?Python NervanaGPU.fprop_pool使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nervanagpu.NervanaGPU的用法示例。


在下文中一共展示了NervanaGPU.fprop_pool方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: GPU

# 需要導入模塊: from nervanagpu import NervanaGPU [as 別名]
# 或者: from nervanagpu.NervanaGPU import fprop_pool [as 別名]

#.........這裏部分代碼省略.........
        Compute the updated gradient for a convolutional network layer.

        Arguments:
            out (GPUTensor): Where to store the updated gradient value.
            inputs (GPUTensor): Will be either the dataset input values (first
                                layer), or the outputs from the previous layer.
            weights (GPUTensor): The weight coefficient values for this layer.
            deltas (GPUTensor): The error values for this layer
            ofmshape (tuple): Dimensions of each output feature map (typically
                              height and width).
            ofmsize (int): Total size of each output feature map.
            ofmlocs (GPUTensor): Indices giving the location of each element in
                                 each output feature map stored in out.
            ifmshape (tuple): Dimensions of each input feature map (typically
                              height and width).
            links (GPUTensor): Input receptive field indices.
            nifm (int): Total number of input feature maps.
            padding (int): Number of additional elements to include along each
                           dimension of each local receptive field during the
                           convolution operation.
            stride (int): Number of neurons to shift the filter at each step.
            ngroups (int): Number of groups.
            fwidth (int): Filter width.
            updatebuf (GPUTensor): Temporary storage buffer used to hold the
                                   updated gradient for a single receptive
                                   field
            local (bool, optional): Whether to do local filtering (True) or
                                    convolution (False, the default)
            layer (Layer): The layer object.
        """
        self.ng.update_conv(layer=updatebuf, I=inputs, E=deltas, grad_F=out,
                            alpha=1.0, repeat=1)

    def fprop_pool(self, out, inputs, op, ofmshape, ofmsize, ofmlocs, fshape,
                   ifmshape, links, nifm, padding, stride, fpropbuf):
        """
        Forward propagate the inputs of a Pooling network layer to
        produce output pre-activations (ready for transformation by an
        activation function).

        Arguments:
            out (GPUTensor): Where to store the forward propagated results.
            inputs (GPUTensor): Will be either the dataset input values (first
                                layer), or the outputs from the previous layer.
            op (string): The type of pooling operation to apply.  We support
                         "max", "avg", "l2" currently.
            ofmshape (tuple): Dimensions of each output feature map (typically
                              number of height and width neurons).
            ofmsize (int): Total size of each output feature map.
            ofmlocs (GPUTensor): Indices giving the location of each element in
                                 each output feature map stored in out.
            fshape (tuple): Dimensions of each filter (typically height and
                            width).
            ifmshape (tuple): Dimensions of each input feature map (typically
                              number of height and width neurons).
            links (GPUTensor): Input receptive field indices.
            nifm (int): Total number of input feature maps.
            padding (int): Number of additional elements to include along each
                           dimension of each local receptive field during the
                           pooling operation.
            stride (int): Number of neurons to shift the filter at each step.
            fpropbuf (GPUTensor): Temporary storage buffer used to hold the
                                  pooled outputs for a single receptive field.
        """
        op = op.lower()
        if op == "max":
開發者ID:YouVentures,項目名稱:neon,代碼行數:70,代碼來源:gpu.py

示例2: padding

# 需要導入模塊: from nervanagpu import NervanaGPU [as 別名]
# 或者: from nervanagpu.NervanaGPU import fprop_pool [as 別名]
# zero pad the last row of cpu input for the sake of numpy
if pool.op == "max":
    cpuI[-1,:] = np.finfo(cpuI.dtype).min
else:
    cpuI[-1,:] = 0

# cpu output arrays
cpuO = np.empty(dimO, dtype=np.float32)
cpuB = np.zeros(slicable(dimI,1), dtype=np.float32)

# give gpu the input array without zero padding (not needed)
devI = ng.array(cpuI[:-1,:].reshape(dimI), dtype=dtype)
devO = ng.zeros(dimO, dtype=dtype)
devB = ng.empty(dimI, dtype=dtype)

ng.fprop_pool(pool, devI, devO, repeat=repeat)

ng.bprop_pool(pool, devI, devO, devB, repeat=repeat)

def pixel_indices(kj, mt, pr, qs):

    C       = pool.C
    J,T,R,S = pool.JTRS
    D,H,W = pool.DHW
    HW    = H*W
    DHW   = D*H*W
    imax  = C*D*H*W
    idx   = []

    for j in range(J):
        c  = kj + j
開發者ID:KayneWest,項目名稱:nervanagpu,代碼行數:33,代碼來源:pool_test.py


注:本文中的nervanagpu.NervanaGPU.fprop_pool方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。