當前位置: 首頁>>代碼示例>>Java>>正文


Java Utils.sum方法代碼示例

本文整理匯總了Java中weka.core.Utils.sum方法的典型用法代碼示例。如果您正苦於以下問題:Java Utils.sum方法的具體用法?Java Utils.sum怎麽用?Java Utils.sum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在weka.core.Utils的用法示例。


在下文中一共展示了Utils.sum方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: chooseRandomIndexBasedOnProportions

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * returns a random index based on the given proportions
 * 
 * @param proportionArray the proportions
 * @param random the random number generator to use
 * @return the random index
 */
protected int chooseRandomIndexBasedOnProportions(double[] proportionArray,
  Random random) {

  double probSum;
  double val;
  int index;
  double sum;

  probSum = Utils.sum(proportionArray);
  val = random.nextDouble() * probSum;
  index = 0;
  sum = 0.0;

  while ((sum <= val) && (index < proportionArray.length)) {
    sum += proportionArray[index++];
  }

  return index - 1;
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:27,代碼來源:RandomRBF.java

示例2: leafNumInstances

import weka.core.Utils; //導入方法依賴的package包/類
protected int leafNumInstances()
{
	if (m_Attribute != -1)
		throw new Error("not a leaf");
	double sum = 0;
	if (m_ClassDistribution != null)
		sum = Utils.sum(m_ClassDistribution);
	return (int) sum;
}
 
開發者ID:seqcode,項目名稱:seqcode-core,代碼行數:10,代碼來源:AttributeRandomTree.java

示例3: leafString

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Outputs a leaf.
 * 
 * @return the leaf as string
 * @throws Exception if generation fails
 */
protected String leafString() throws Exception {

  double sum = 0, maxCount = 0;
  int maxIndex = 0;
  double classMean = 0;
  double avgError = 0;
  if (m_ClassDistribution != null) {
    if (m_Info.classAttribute().isNominal()) {
      sum = Utils.sum(m_ClassDistribution);
      maxIndex = Utils.maxIndex(m_ClassDistribution);
      maxCount = m_ClassDistribution[maxIndex];
    } else {
      classMean = m_ClassDistribution[0];
      if (m_Distribution[1] > 0) {
        avgError = m_Distribution[0] / m_Distribution[1];
      }
    }
  }

  if (m_Info.classAttribute().isNumeric()) {
    return " : " + Utils.doubleToString(classMean, 2) + " ("
      + Utils.doubleToString(m_Distribution[1], 2) + "/"
      + Utils.doubleToString(avgError, 2) + ")";
  }

  return " : " + m_Info.classAttribute().value(maxIndex) + " ("
    + Utils.doubleToString(sum, 2) + "/"
    + Utils.doubleToString(sum - maxCount, 2) + ")";
}
 
開發者ID:seqcode,項目名稱:seqcode-core,代碼行數:36,代碼來源:AttributeRandomTree.java

示例4: getSquaredError

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Gets the squared error for all clusters.
 * 
 * @return the squared error, NaN if fast distance calculation is used
 * @see #m_FastDistanceCalc
 */
public double getSquaredError() {
  if (m_FastDistanceCalc) {
    return Double.NaN;
  } else {
    return Utils.sum(m_squaredErrors);
  }
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:14,代碼來源:SimpleKMeans.java

示例5: clusterInstance

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Classifies a given instance. Either this or distributionForInstance() needs
 * to be implemented by subclasses.
 * 
 * @param instance the instance to be assigned to a cluster
 * @return the number of the assigned cluster as an integer
 * @exception Exception if instance could not be clustered successfully
 */
@Override
public int clusterInstance(Instance instance) throws Exception {

  double[] dist = distributionForInstance(instance);

  if (dist == null) {
    throw new Exception("Null distribution predicted");
  }

  if (Utils.sum(dist) <= 0) {
    throw new Exception("Unable to cluster instance");
  }
  return Utils.maxIndex(dist);
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:23,代碼來源:AbstractClusterer.java

示例6: distributionForInstance

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Classifies a given instance using the selected combination rule.
 * 
 * @param instance the instance to be classified
 * @return the distribution
 * @throws Exception if instance could not be classified successfully
 */
@Override
public double[] distributionForInstance(Instance instance) throws Exception {
  double[] result = new double[instance.numClasses()];

  switch (m_CombinationRule) {
  case AVERAGE_RULE:
    result = distributionForInstanceAverage(instance);
    break;
  case PRODUCT_RULE:
    result = distributionForInstanceProduct(instance);
    break;
  case MAJORITY_VOTING_RULE:
    result = distributionForInstanceMajorityVoting(instance);
    break;
  case MIN_RULE:
    result = distributionForInstanceMin(instance);
    break;
  case MAX_RULE:
    result = distributionForInstanceMax(instance);
    break;
  case MEDIAN_RULE:
    result[0] = classifyInstance(instance);
    break;
  default:
    throw new IllegalStateException("Unknown combination rule '"
      + m_CombinationRule + "'!");
  }

  if (!instance.classAttribute().isNumeric() && (Utils.sum(result) > 0)) {
    Utils.normalize(result);
  }

  return result;
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:42,代碼來源:Vote.java

示例7: add

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Adds counts to given bag.
 */
public final void add(int bagIndex, double[] counts) {

  double sum = Utils.sum(counts);

  for (int i = 0; i < counts.length; i++) {
    m_perClassPerBag[bagIndex][i] += counts[i];
  }
  m_perBag[bagIndex] = m_perBag[bagIndex] + sum;
  for (int i = 0; i < counts.length; i++) {
    m_perClass[i] = m_perClass[i] + counts[i];
  }
  totaL = totaL + sum;
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:17,代碼來源:Distribution.java

示例8: KononenkosMDL

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Test using Kononenko's MDL criterion.
 * 
 * @param priorCounts
 * @param bestCounts
 * @param numInstances
 * @param numCutPoints
 * @return true if the split is acceptable
 */
private boolean KononenkosMDL(double[] priorCounts, double[][] bestCounts,
  double numInstances, int numCutPoints) {

  double distPrior, instPrior, distAfter = 0, sum, instAfter = 0;
  double before, after;
  int numClassesTotal;

  // Number of classes occuring in the set
  numClassesTotal = 0;
  for (double priorCount : priorCounts) {
    if (priorCount > 0) {
      numClassesTotal++;
    }
  }

  // Encode distribution prior to split
  distPrior = SpecialFunctions.log2Binomial(numInstances + numClassesTotal
    - 1, numClassesTotal - 1);

  // Encode instances prior to split.
  instPrior = SpecialFunctions.log2Multinomial(numInstances, priorCounts);

  before = instPrior + distPrior;

  // Encode distributions and instances after split.
  for (double[] bestCount : bestCounts) {
    sum = Utils.sum(bestCount);
    distAfter += SpecialFunctions.log2Binomial(sum + numClassesTotal - 1,
      numClassesTotal - 1);
    instAfter += SpecialFunctions.log2Multinomial(sum, bestCount);
  }

  // Coding cost after split
  after = Utils.log2(numCutPoints) + distAfter + instAfter;

  // Check if split is to be accepted
  return (before > after);
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:48,代碼來源:Discretize.java

示例9: computeAverageClassValues

import weka.core.Utils; //導入方法依賴的package包/類
/** Computes average class values for each attribute and value */
private void computeAverageClassValues() {

  double totalCounts, sum;
  Instance instance;
  double[] counts;

  double[][] avgClassValues = new double[getInputFormat().numAttributes()][0];
  m_Indices = new int[getInputFormat().numAttributes()][0];
  for (int j = 0; j < getInputFormat().numAttributes(); j++) {
    Attribute att = getInputFormat().attribute(j);
    if (att.isNominal()) {
      avgClassValues[j] = new double[att.numValues()];
      counts = new double[att.numValues()];
      for (int i = 0; i < getInputFormat().numInstances(); i++) {
        instance = getInputFormat().instance(i);
        if (!instance.classIsMissing() && (!instance.isMissing(j))) {
          counts[(int) instance.value(j)] += instance.weight();
          avgClassValues[j][(int) instance.value(j)] += instance.weight()
            * instance.classValue();
        }
      }
      sum = Utils.sum(avgClassValues[j]);
      totalCounts = Utils.sum(counts);
      if (Utils.gr(totalCounts, 0)) {
        for (int k = 0; k < att.numValues(); k++) {
          if (Utils.gr(counts[k], 0)) {
            avgClassValues[j][k] /= counts[k];
          } else {
            avgClassValues[j][k] = sum / totalCounts;
          }
        }
      }
      m_Indices[j] = Utils.sort(avgClassValues[j]);
    }
  }
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:38,代碼來源:NominalToBinary.java

示例10: process

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Processes the given data.
 * 
 * @param instances the data to process
 * @return the modified data
 * @throws Exception in case the processing goes wrong
 */
@Override
protected Instances process(Instances instances) throws Exception {

  // Only change first batch of data
  if (isFirstBatchDone()) {
    return new Instances(instances);
  }

  // Generate the output and return it
  Instances result = new Instances(instances, instances.numInstances());
  double[] sumOfWeightsPerClass = new double[instances.numClasses()];
  for (int i = 0; i < instances.numInstances(); i++) {
    Instance inst = instances.instance(i);
    sumOfWeightsPerClass[(int)inst.classValue()] += inst.weight();
  }
  double sumOfWeights = Utils.sum(sumOfWeightsPerClass);

  // Rescale weights
  double factor = sumOfWeights / (double)instances.numClasses();
  for (int i = 0; i < instances.numInstances(); i++) {
    result.add(instances.instance(i)); // This will make a copy
    Instance newInst = result.instance(i);
    copyValues(newInst, false, instances, outputFormatPeek());
    newInst.setWeight(factor * newInst.weight() / 
                      sumOfWeightsPerClass[(int)newInst.classValue()]);
  }
  return result;
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:36,代碼來源:ClassBalancer.java

示例11: distributionForInstance

import weka.core.Utils; //導入方法依賴的package包/類
/**
  * Calculates the class membership probabilities for the given test instance.
  *
  * @param instance the instance to be classified
  * @return predicted class probability distribution
  * @throws Exception if an error occurred during the prediction
  */
 public double [] distributionForInstance(Instance instance) throws Exception {

   double transProb = 0.0, temp = 0.0;
   double [] classProbability = new double[m_NumClasses];
   double [] predictedValue = new double[1];

   // initialization ...
   for (int i=0; i<classProbability.length; i++) {
     classProbability[i] = 0.0;
   }
   predictedValue[0] = 0.0;
   if (m_InitFlag == ON) {
// need to compute them only once and will be used for all instances.
// We are doing this because the evaluation module controls the calls. 
     if (m_BlendMethod == B_ENTROPY) {
generateRandomClassColomns();
     }
     m_Cache = new KStarCache[m_NumAttributes];
     for (int i=0; i<m_NumAttributes;i++) {
m_Cache[i] = new KStarCache();
     }
     m_InitFlag = OFF;
     //      System.out.println("Computing...");
   }
   // init done.
   Instance trainInstance;
   Enumeration<Instance> enu = m_Train.enumerateInstances();
   while ( enu.hasMoreElements() ) {
     trainInstance = (Instance)enu.nextElement();
     transProb = instanceTransformationProbability(instance, trainInstance);      
     switch ( m_ClassType )
{
case Attribute.NOMINAL:
  classProbability[(int)trainInstance.classValue()] += transProb;
  break;
case Attribute.NUMERIC:
  predictedValue[0] += transProb * trainInstance.classValue();
  temp += transProb;
  break;
}
   }
   if (m_ClassType == Attribute.NOMINAL) {
     double sum = Utils.sum(classProbability);
     if (sum <= 0.0)
for (int i=0; i<classProbability.length; i++)
  classProbability[i] = (double) 1/ (double) m_NumClasses;
     else Utils.normalize(classProbability, sum);
     return classProbability;
   }
   else {
     predictedValue[0] = (temp != 0) ? predictedValue[0] / temp : 0.0;
     return predictedValue;
   }
 }
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:62,代碼來源:KStar.java

示例12: doPrintClassification

import weka.core.Utils; //導入方法依賴的package包/類
protected void doPrintClassification(double[] dist, Instance inst, int index) throws Exception {
  int prec = m_NumDecimals;
  
  Instance withMissing = (Instance)inst.copy();
  withMissing.setDataset(inst.dataset());
  
  double predValue = 0;
  if (Utils.sum(dist) == 0) {
    predValue = Utils.missingValue();
  } else {
    if (inst.classAttribute().isNominal()) {
      predValue = Utils.maxIndex(dist);
    } else {
      predValue = dist[0];                         
    }
  }
  
  // index
  append("<tr>");
  append("<td>" + (index+1) + "</td>");

  if (inst.dataset().classAttribute().isNumeric()) {
    // actual
    if (inst.classIsMissing())
      append("<td align=\"right\">" + "?" + "</td>");
    else
      append("<td align=\"right\">" + Utils.doubleToString(inst.classValue(), prec) + "</td>");
    // predicted
    if (Utils.isMissingValue(predValue))
      append("<td align=\"right\">" + "?" + "</td>");
    else
      append("<td align=\"right\">" + Utils.doubleToString(predValue, prec) + "</td>");
    // error
    if (Utils.isMissingValue(predValue) || inst.classIsMissing())
      append("<td align=\"right\">" + "?" + "</td>");
    else
      append("<td align=\"right\">" + Utils.doubleToString(predValue - inst.classValue(), prec) + "</td>");
  } else {
    // actual
    append("<td>" + ((int) inst.classValue()+1) + ":" + sanitize(inst.toString(inst.classIndex())) + "</td>");
    // predicted
    if (Utils.isMissingValue(predValue))
      append("<td>" + "?" + "</td>");
    else
      append("<td>" + ((int) predValue+1) + ":" + sanitize(inst.dataset().classAttribute().value((int)predValue)) + "</td>");
    // error?
    if (!Utils.isMissingValue(predValue) && !inst.classIsMissing() && ((int) predValue+1 != (int) inst.classValue()+1))
      append("<td>" + "+" + "</td>");
    else
      append("<td>" + "&nbsp;" + "</td>");
    // prediction/distribution
    if (m_OutputDistribution) {
      if (Utils.isMissingValue(predValue)) {
        append("<td>" + "?" + "</td>");
      }
      else {
        append("<td align=\"right\">");
        for (int n = 0; n < dist.length; n++) {
          if (n > 0)
            append("</td><td align=\"right\">");
          if (n == (int) predValue)
            append("*");
          append(Utils.doubleToString(dist[n], prec));
        }
        append("</td>");
      }
    }
    else {
      if (Utils.isMissingValue(predValue))
        append("<td align=\"right\">" + "?" + "</td>");
      else
        append("<td align=\"right\">" + Utils.doubleToString(dist[(int)predValue], prec) + "</td>");
    }
  }

  // attributes
  append(attributeValuesString(withMissing) + "</tr>\n");    
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:79,代碼來源:HTML.java

示例13: backfitHoldOutSet

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Backfits data from holdout set.
 * 
 * @throws Exception if insertion fails
 */
protected void backfitHoldOutSet() throws Exception {

  // Insert instance into hold-out class distribution
  if (m_Info.classAttribute().isNominal()) {

    // Nominal case
    if (m_ClassProbs == null) {
      m_ClassProbs = new double[m_Info.numClasses()];
    }
    System.arraycopy(m_Distribution, 0, m_ClassProbs, 0,
      m_Info.numClasses());
    for (int i = 0; i < m_HoldOutDist.length; i++) {
      m_ClassProbs[i] += m_HoldOutDist[i];
    }
    if (Utils.sum(m_ClassProbs) > 0) {
      doSmoothing();
      Utils.normalize(m_ClassProbs);
    } else {
      m_ClassProbs = null;
    }
  } else {

    // Numeric case
    double sumOfWeightsTrainAndHoldout = m_Distribution[1]
      + m_HoldOutDist[0];
    if (sumOfWeightsTrainAndHoldout <= 0) {
      return;
    }
    if (m_ClassProbs == null) {
      m_ClassProbs = new double[1];
    } else {
      m_ClassProbs[0] *= m_Distribution[1];
    }
    m_ClassProbs[0] += m_HoldOutDist[1];
    m_ClassProbs[0] /= sumOfWeightsTrainAndHoldout;
  }

  // The process is recursive
  if (m_Attribute != -1) {
    for (Tree m_Successor : m_Successors) {
      m_Successor.backfitHoldOutSet();
    }
  }
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:50,代碼來源:REPTree.java

示例14: calculateRegionProbs

import weka.core.Utils; //導入方法依賴的package包/類
private double[] calculateRegionProbs(int j, int i) throws Exception {
  double[] sumOfProbsForRegion = new double[m_trainingData.classAttribute()
    .numValues()];

  for (int u = 0; u < m_numOfSamplesPerRegion; u++) {

    double[] sumOfProbsForLocation = new double[m_trainingData
      .classAttribute().numValues()];

    m_weightingAttsValues[m_xAttribute] = getRandomX(j);
    m_weightingAttsValues[m_yAttribute] = getRandomY(m_panelHeight - i - 1);

    m_dataGenerator.setWeightingValues(m_weightingAttsValues);

    double[] weights = m_dataGenerator.getWeights();
    double sumOfWeights = Utils.sum(weights);
    int[] indices = Utils.sort(weights);

    // Prune 1% of weight mass
    int[] newIndices = new int[indices.length];
    double sumSoFar = 0;
    double criticalMass = 0.99 * sumOfWeights;
    int index = weights.length - 1;
    int counter = 0;
    for (int z = weights.length - 1; z >= 0; z--) {
      newIndices[index--] = indices[z];
      sumSoFar += weights[indices[z]];
      counter++;
      if (sumSoFar > criticalMass) {
        break;
      }
    }
    indices = new int[counter];
    System.arraycopy(newIndices, index + 1, indices, 0, counter);

    for (int z = 0; z < m_numOfSamplesPerGenerator; z++) {

      m_dataGenerator.setWeightingValues(m_weightingAttsValues);
      double[][] values = m_dataGenerator.generateInstances(indices);

      for (int q = 0; q < values.length; q++) {
        if (values[q] != null) {
          System.arraycopy(values[q], 0, m_vals, 0, m_vals.length);
          m_vals[m_xAttribute] = m_weightingAttsValues[m_xAttribute];
          m_vals[m_yAttribute] = m_weightingAttsValues[m_yAttribute];

          // classify the instance
          m_dist = m_classifier.distributionForInstance(m_predInst);

          for (int k = 0; k < sumOfProbsForLocation.length; k++) {
            sumOfProbsForLocation[k] += (m_dist[k] * weights[q]);
          }
        }
      }
    }

    for (int k = 0; k < sumOfProbsForRegion.length; k++) {
      sumOfProbsForRegion[k] += (sumOfProbsForLocation[k] * sumOfWeights);
    }
  }

  // average
  Utils.normalize(sumOfProbsForRegion);

  // cache
  double[] tempDist = new double[sumOfProbsForRegion.length];
  System.arraycopy(sumOfProbsForRegion, 0, tempDist, 0,
    sumOfProbsForRegion.length);

  return tempDist;
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:72,代碼來源:RemoteBoundaryVisualizerSubTask.java

示例15: calculateRegionProbs

import weka.core.Utils; //導入方法依賴的package包/類
private double[] calculateRegionProbs(int j, int i) throws Exception {
  double[] sumOfProbsForRegion = new double[m_trainingData.classAttribute()
    .numValues()];

  for (int u = 0; u < m_numOfSamplesPerRegion; u++) {

    double[] sumOfProbsForLocation = new double[m_trainingData
      .classAttribute().numValues()];

    m_weightingAttsValues[m_xAttribute] = getRandomX(j);
    m_weightingAttsValues[m_yAttribute] = getRandomY(m_panelHeight - i - 1);

    m_dataGenerator.setWeightingValues(m_weightingAttsValues);

    double[] weights = m_dataGenerator.getWeights();
    double sumOfWeights = Utils.sum(weights);
    int[] indices = Utils.sort(weights);

    // Prune 1% of weight mass
    int[] newIndices = new int[indices.length];
    double sumSoFar = 0;
    double criticalMass = 0.99 * sumOfWeights;
    int index = weights.length - 1;
    int counter = 0;
    for (int z = weights.length - 1; z >= 0; z--) {
      newIndices[index--] = indices[z];
      sumSoFar += weights[indices[z]];
      counter++;
      if (sumSoFar > criticalMass) {
        break;
      }
    }
    indices = new int[counter];
    System.arraycopy(newIndices, index + 1, indices, 0, counter);

    for (int z = 0; z < m_numOfSamplesPerGenerator; z++) {

      m_dataGenerator.setWeightingValues(m_weightingAttsValues);
      double[][] values = m_dataGenerator.generateInstances(indices);

      for (int q = 0; q < values.length; q++) {
        if (values[q] != null) {
          System.arraycopy(values[q], 0, m_vals, 0, m_vals.length);
          m_vals[m_xAttribute] = m_weightingAttsValues[m_xAttribute];
          m_vals[m_yAttribute] = m_weightingAttsValues[m_yAttribute];

          // classify the instance
          m_dist = m_classifier.distributionForInstance(m_predInst);
          for (int k = 0; k < sumOfProbsForLocation.length; k++) {
            sumOfProbsForLocation[k] += (m_dist[k] * weights[q]);
          }
        }
      }
    }

    for (int k = 0; k < sumOfProbsForRegion.length; k++) {
      sumOfProbsForRegion[k] += (sumOfProbsForLocation[k] * sumOfWeights);
    }
  }

  // average
  Utils.normalize(sumOfProbsForRegion);

  // cache
  if ((i < m_panelHeight) && (j < m_panelWidth)) {
    m_probabilityCache[i][j] = new double[sumOfProbsForRegion.length];
    System.arraycopy(sumOfProbsForRegion, 0, m_probabilityCache[i][j], 0,
      sumOfProbsForRegion.length);
  }

  return sumOfProbsForRegion;
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:73,代碼來源:BoundaryPanel.java


注:本文中的weka.core.Utils.sum方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。