本文整理匯總了Java中weka.core.Utils.grOrEq方法的典型用法代碼示例。如果您正苦於以下問題:Java Utils.grOrEq方法的具體用法?Java Utils.grOrEq怎麽用?Java Utils.grOrEq使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類weka.core.Utils
的用法示例。
在下文中一共展示了Utils.grOrEq方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: check
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Checks if at least two bags contain a minimum number of instances.
*/
public final boolean check(double minNoObj) {
int counter = 0;
int i;
for (i = 0; i < m_perBag.length; i++) {
if (Utils.grOrEq(m_perBag[i], minNoObj)) {
counter++;
}
}
if (counter > 1) {
return true;
} else {
return false;
}
}
示例2: maxBag
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Returns index of bag containing maximum number of instances.
*/
public final int maxBag() {
double max;
int maxIndex;
int i;
max = 0;
maxIndex = -1;
for (i = 0; i < m_perBag.length; i++) {
if (Utils.grOrEq(m_perBag[i], max)) {
max = m_perBag[i];
maxIndex = i;
}
}
return maxIndex;
}
示例3: testWRTZeroR
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Determine whether the scheme performs worse than ZeroR during testing
*
* @param classifier the pre-trained classifier
* @param evaluation the classifier evaluation object
* @param train the training data
* @param test the test data
* @return index 0 is true if the scheme performs better than ZeroR
* @throws Exception if there was a problem during the scheme's testing
*/
protected boolean[] testWRTZeroR(Classifier classifier,
Evaluation evaluation, Instances train, Instances test) throws Exception {
boolean[] result = new boolean[2];
evaluation.evaluateModel(classifier, test);
try {
// Tested OK, compare with ZeroR
Classifier zeroR = new weka.classifiers.rules.ZeroR();
zeroR.buildClassifier(train);
Evaluation zeroREval = new Evaluation(train);
zeroREval.evaluateModel(zeroR, test);
result[0] = Utils.grOrEq(zeroREval.errorRate(), evaluation.errorRate());
} catch (Exception ex) {
throw new Error("Problem determining ZeroR performance: "
+ ex.getMessage());
}
return result;
}
示例4: chooseLastIndex
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Choose last index (ie. choose rule).
*/
public final int chooseLastIndex() {
int minIndex = 0;
double estimated, min = Double.MAX_VALUE;
if (!m_isLeaf) {
for (int i = 0; i < m_sons.length; i++) {
if (son(i) != null) {
if (Utils.grOrEq(localModel().distribution().perBag(i), m_minNumObj)) {
estimated = son(i).getSizeOfBranch();
if (Utils.sm(estimated, min)) {
min = estimated;
minIndex = i;
}
}
}
}
}
return minIndex;
}
示例5: handleEnumeratedAttribute
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Creates split on enumerated attribute.
*
* @exception Exception if something goes wrong
*/
private void handleEnumeratedAttribute(Instances trainInstances)
throws Exception {
Distribution newDistribution, secondDistribution;
int numAttValues;
double currIG, currGR;
Instance instance;
int i;
numAttValues = trainInstances.attribute(m_attIndex).numValues();
newDistribution = new Distribution(numAttValues,
trainInstances.numClasses());
// Only Instances with known values are relevant.
Enumeration<Instance> enu = trainInstances.enumerateInstances();
while (enu.hasMoreElements()) {
instance = enu.nextElement();
if (!instance.isMissing(m_attIndex)) {
newDistribution.add((int) instance.value(m_attIndex), instance);
}
}
m_distribution = newDistribution;
// For all values
for (i = 0; i < numAttValues; i++) {
if (Utils.grOrEq(newDistribution.perBag(i), m_minNoObj)) {
secondDistribution = new Distribution(newDistribution, i);
// Check if minimum number of Instances in the two
// subsets.
if (secondDistribution.check(m_minNoObj)) {
m_numSubsets = 2;
currIG = m_infoGainCrit.splitCritValue(secondDistribution,
m_sumOfWeights);
currGR = m_gainRatioCrit.splitCritValue(secondDistribution,
m_sumOfWeights, currIG);
if ((i == 0) || Utils.gr(currGR, m_gainRatio)) {
m_gainRatio = currGR;
m_infoGain = currIG;
m_splitPoint = i;
m_distribution = secondDistribution;
}
}
}
}
}